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Modeling Rippled Fractal Patterns of Leaves ?
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Abstract

Rippled patterns of leaf edges are important factors to portray the natural beauty of plants. However,
it is a challenging problem to model this phenomenon because of their irregularity. We propose an
efficient hybrid method for generating rippled effects of leaf edges. First, we extract contours and veins
from scanned images of leaves and triangulate leaf membrane using a refined Delaunay triangulation
method. Next, we deform flat leaves based on a fast and stable cantilever beam model. Finally, we
apply fractional Brownian motion (fBm) noise, which generated by inverse fast Fourier transform, to
simulating wavy leaves based on their fractal features. We take a maize leaf as an example to demonstrate
the effectiveness of our method. The results show that we can create a realistic wavy leaf only by
controlling few parameters and provide a new way to model detail features of plant organs in virtual
plants.
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1 Introduction

For computer representation of plants, leaves are essential parts to portray the natural beauty of
plants. Previously, many studies focused on simulating entire plants instead of individual plant
organs [1, 2]. Recently, researchers begun to study the modeling of leaves and some modeling
techniques are well developed especially for simulating venation patterns [3]. However, natural
leaves show diversities such as rippled edges and curved surface even in the same species. Using
interactive software, we can model a particular leaf with complicated shapes. The problem is the
manually modeling thousands of leaves with a variety of shapes which can cover different wavy
and curved situations. In this paper, we present a hybrid leaf modeling method that consists of a
stochastic model and an improved cantilever beam model. The advantage of this method is the
capability of modeling realistic leaves with wavy edges just by controlling few parameters.
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2 Related Works

2.1 State of the art of leaf modeling

Representation of botanical trees in Computer Graphics has been studied by many researchers
[4, 6, 6]. However, these studies mainly focused on modeling tree structures instead of tree
organs such as bark, leaves, flowers and fruits. As the development of Computer Graphics, more
and more studies begun to pursue representing detail information of trees. With regard to leaf
modeling, some techniques including geometric based methods [5, 7], sketch based method [8],
rule based method [3], and image based methods [9, 10, 11] have been proposed. Prusinkiewicz et
al. [5] proposed a bi-cubic patches based geometric model to represent complex leaves surfaces.
Later, they developed a leaf modeling method [7] by sweeping an open curve along an axis. Ijiri
et al. [8] presented a freehand sketch system which can model leaves just by few strokes. This
method is very intuitive and interactive for non-expert users. Runions et al. [3] focused on
venation patterns of leaves and simulated development of veins by taking hormone distribution
into account during leaf growth. Recently, some image based methods have been proposed to
model leaves. Mundermann et al. [9] presented a leaf modeling method from a series of processes
including extracting a leaf skeleton and triangulating membranes from scanned leaf image. Hong
et al. [10] extended Mundermann et al. fs method by introducing generalized cylinder veins and
a refined method for membrane triangulation. Quan et al. [11] extracted a generic deformable
leaf model from a sample leaf, and used it to fit all the other leaf point clouds reconstructed from
sparse images.

To represent rippled edges of leaves, we may use the method of [11] to obtain the point clouds
of a real leaf; however, this method can only model a specific leaf by using a sophisticated
reconstruction method. Likewise, it is possible to use methods of [9] and [10] to create the rippled
edges of a leaf, while these methods need too much user interaction. Therefore, we propose an
efficient method to model wavy leaves with few parameters. The closest models to our method
are [9] and [10]. However, the most distinguish part of our method is the post-processing steps
where we treat leaf veins as cantilever beams and control their deformation by setting external
loads with turbulence.

Fig. 1: Photograph of a maize leaf

2.2 Fractal patterns of leaf edges

In a real world, we often observe rippled edges from leaves, flowers and lichens. Fig. 1 shows
the photograph of a maize leaf with the rippled edges. Researchers have found that the wavy
shapes of leaves and flowers are fractals where a pattern repeats on different scales [12, 13]. The
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mechanism of the development of the rippled patterns is the more growth at the edges than the
center of leaves. To represent this kind of ruffled phenomena, using fBm noise function is a natural
choice because fBm function has the same feature of the fractals-self-similarity.

3 fBm Noise Function

To represent natural phenomena efficiently, Fournier [14] introduced fractional Brownian motion
(fBm) noise to model and animate many natural phenomena. The fBm noise denotes a family
of Gaussian random functions which can provide a host of time series. Brownian motion was
observed in the movement of particles in an oil emulsion, and this motion showed a fractal
character which exhibits self-similarity when rescaled using different anisotropic transformations.
The major advantage of the fBm noise is the efficiency of animating the waving phenomena
without solving time-consuming dynamic equations. Because of the low cost and self-similar
properties, we can make use of fBm noise function to model the wavy leaves.

3.1 Generation of fBm noise function

Many approaches, including Poisson faulting, Fourier filtering, midpoint displacement, successive
random additions and summing band-limited noises, have been developed to generate fBm noise
function according to [15]. We choose Fourier filtering method in [16] since signal in frequency
domain is more intuitive and easier to be analyzed than that in time domain. Thus, we first
consider how to create the power spectrum of fBm noise function.

According to [15], a continuous spectrum Sf of one-dimensional fBm noise function can be
denoted by:

Sf = C
Nrand

fβ/2
(1)

where Nrand is the normal distributed random number, C is a constant, f is the frequency
ranging from 0→ +∞ and β is the scaling factor. Fig. 2 shows different spectrums of fBm noise
function with various β values.

Fig. 2: One-dimensional spectrums with various β

The continuous fBm noise function N(t) can be represented by the following inverse Fourier
transform Eq. (2):

N(t) =

∫ +∞

0

Sfe
i(2πft+rand)df

=

∫ +∞

0

Sfcos(2πft+ rand)df + i

∫ +∞

0

Sfsin(2πft+ rand)df

(2)
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Where rand is a random phase. To solve N(t), we discretize the frequency f from 0 to N − 1
with an integer interval 1, then generate discrete spectrum Sf and use IFFT (Inverse Fast Fourier
Transform) to obtain a series of noise number N(t) from t = 0 to N − 1.

3.2 Practical use

The practical use of fBm noise function is flexible. Firstly, we make use of the self-similarity
features by changing β value. Small β value corresponds to sharp change of noise, and large β
value generates smooth fBm noise. If we use the same initial random noises, the generated fBm
noises will have the similar macro-shape even when β values are significantly different (see Fig.
3).

Fig. 3: Noise sequences correspond to various β with spectrum in Fig. 2

The second flexible use of fBm noise is the extension of N(t) to N ′(t) by linear transformation:

N ′(t) = N(rt+ c) (3)

where r is the sampling interval and c is the phase. Using the equation, we can generate different
noise functions only from a single noise N(t) with a specific β value.

4 Improved Cantilever Beam Model

In biomechanics filed, researcher found that branches, petioles and some leaf laminae also function
like cantilever beams. To model a curved beam bending in three-dimensions subjected to an
arbitrary load, we use a method proposed by Hu et al. [17].

We assume that there is an inextensible curved beam (such as a petiole or a branch) in three
dimensions that consists of n discrete segments with length dsi(i = 1, 2, ..., n) loaded by an
external force Fi; P

0
i and Pi represent the initial position and the rest join position of segment i

respectively. The initial angle between the direction of segment i and the load Fi is θ0i and the
equilibrium angle is θi; ϕi is the bending angle of segment i with its joint Pi; Ni is the normal of
the plane determined by Fi and P0

i ; EIi is the flexural rigidity; and Mi is the resultant bending
moment at segment i.

To find the equilibrium angle θi and replace the joint position P0
i with Pi, we can use the

Bernouilli-Euler hypothesis to obtain the following equilibrium function:

ds2i sin(θ0i − ϕi)|
n∑
j=i

Fj| = EIiϕi (4)
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The bending angle ϕi can be solved by Newtonfs method. Finally, we rotate segment i about
the normal Ni with ϕi and obtain the equilibrium position Pi.

5 Rippled Fractal Patterns of Leaf Edges

5.1 Skeleton extraction and triangulation

To model wavy leaves, we first need to generate a triangulated leaf model with skeletons. We use
image processing method to detect edges from a scanned leaf as shown in Fig. 4(a), and extract
the primary vein and the secondary veins of the leaf by using an interactive method as shown
in Fig. 4(b). Before triangulation, we generate sample vertices inside the leaf membrane using a
user defined square template as shown in Fig. 4(c).

The general triangulation method is the Delaunay triangulation. However, we cannot use this
method to triangulate leaf surfaces since it fails to handle concavities and holes as seen in Fig.
4(c). Ruppert [18] proposed a Refined Delaunay Triangulation (RDT) that can handle holes and
concavities of planar objects. Fig. 4(d) shows the triangulation result of Fig. 4(c) using the RDT
method.

(a) (b)

(c) (d)

Fig. 4: Skeleton extraction and triangulation of a leaf

5.2 Skeleton extraction and triangulation of a leaf

5.2.1 Leaf model

Our leaf model includes a petiole jointing at a twig, and a lamina jointing at the petiole. Fig.
5 shows the position relationship between twig and petiole, petiole and leaf. We assume that
OT (M1,M2, . . . ,Mi, . . . ,Mn) represents the primary vein part, and LiMi and RiMi are the sec-
ondary veins. If we treat both the petiole and veins as a curved beam, then we can deform the
whole leaf surface. After using the improved cantilever beam model introduced in Section 4, we
can flexibly generate non-planar surfaces of leaves just by controlling the petiole, the primary
vein and the secondary veins.
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Fig. 5: A leaf model consists of a petiole, a primary vein and secondary veins

5.2.2 Modeling nonplanar leaves

To be specific, the petiole part is deformed when subjected to a load Fp, with a 4×4 transformation
matrix Mp. Then, we update the primary vein coordinates by Mi = Mp × Mi. Next, we
bend the vein OT (M1,M2, . . . ,Mi, . . . ,Mn) by a load Fm, and obtain new main vein coordinates
Mi = Ma × Mi where Ma is the transformation matrix. In some cases, we observe obvious
rotation phenomena of leaves (see Fig. 1). However, this kind of rotation cannot be generated
by the beam bending method. Thus, we apply a rotation matrix Mr to each joint position.
The rotation matrix is generated by rotating point Mi about axis MiMi+1 with a user-defined
angle. As a result, Mi = Mr ×Mi. Here, the transformations of these three steps will generate
a concatenation matrix Ms = Mr ×Ma ×Mp. By concatenating a sequence of matrices into a
single one, we can simplify the transformation process and gain efficiency. Then, the secondary
vein coordinates Pj on LiMi and RiMi can be updated by Pj = Ms×Pj. Finally, let the external
forces on LiMi and RiMi be F l

i and F r
i , respectively. After using the beam bending method for

each secondary vein, we will generate the final position on the leaf skeletons Pj = Mf ×Pj where
Mf is the transformation matrix.

Because the rest curved shape is determined by the external loads on the petiole (Fp) and
the veins (Fm, F

l
i and F

r
i ), it is easy to generate various curved leaves only by controlling few

parameters. Fig. 6(a) shows the basic maize leaf model in our simulation. Besides the pure
bending controlled by beam bending method, we also apply a user defined rotation angle to the
primary vein to increase the flexibility of the deformation. Fig. 6(b) and Fig. 6(c) show the
deformed maize leaf after bending the primary vein and rotating the primary vein by a user
defined angle, respectively.

(a) (b) (c)

Fig. 6: (a) Before and (b) after bending and (c) rotating the primary vein of a leaf
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5.2.3 Modeling rippled edges

Based on the fBm noise model presented in the Section 3, we can visualize the fBm noise to
generate the rippled edges of leaves by carrying out secondary veins deformation. Here, the
external loads F l

i and F r
i on the secondary veins LiMi and RiMi are converted to turbulent loads

as follows:

|Fl
i| = P l

i [λ+ (1− λ)N(kli+ θl)]

|Fr
i | = P r

i [λ+ (1− λ)N(kri+ θr)]
(5)

Where P l
i and P r

i are amplitudes of loads; N(kli+ θl) and N(kri+ θr) are fBm noise functions;
λ represents the fluctuation degree of noise; kl and kr are used to control the sampling intervals
of noises; θl and θr are phases to control the offsets of noise sequences.

6 Experimental Results

We took a maize leaf as an example and generated various rippled effects. Compared to Fig. 6,
we change the deformation from the primary vein to secondary veins using Eq. (5). The control
parameters for the secondary veins consist of the strength of load, sampling intervals of fBm
noises and the offsets of the noises for the left and the right veins.

(a) β = 1.0 (b) β = 2.0

Fig. 7: Results of wavy maize edges with different β

Fig. 6(a) shows the initial positions of the tested maize leaf. Since different β value of fBm noise
function will generate different kinds of turbulence. We tested two types of fBm noise functions
with β = 1.0 and β = 2.0 and they have the same parameters kl = kr = 0.3 and θl = 8, θr = 10,
respectively. Fig. 7(a) and (b) show the result of the same maize leaf with different β. We found
that the rippled edges in Fig. 7(b) with large β are relatively fairer than that in Fig. 7(a). To test
the influence of sampling intervals kl and kr, we set different sampling intervals with the same
β = 1.0 and θl = 8, θr = 10. Compared to the case with kl = kr = 0.3 in Fig. 8(a), the simulation
wavy edges change more slowly with kl = kr = 0.1 (see Fig. 8(b)). One of the advantages of this
modeling method is the generation of various wavy styles only by changing the phase θl and θr.
Fig. 9(a) and (b) are two visualized maize leaves with the same β = 2.0, and sampling intervals
kl = kr = 0.3. Yet, by choosing different θl and θr, the generated leaf shapes are obviously
different. After choosing suitable parameters, we can obtain a maize leaf as shown in Fig. 10. In
some situation, we need to create lots of leaves with different shapes. Traditional ways may not
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solve this problem. Our modeling method, which is controlled only by few parameters (β, kl and
kr, θl and θr), is possible to generate thousands of leaves with diversity in a nutshell.

(a) kl = kr = 0.3 (b) kl = kr = 0.1

Fig. 8: Results of wavy maize edges with different sampling intervals

(a) θl = 8, θr = 10 (b) θl = 110, θr = 94

Fig. 9: Results of wavy maize edges with different phases

Fig. 10: Visualization of a maize leaf after adjusting several parameters

7 Conclusion

In this paper, we proposed a hybrid method that includes an fBm noise model and an improved
cantilever beam model to create wavy leaves. We employed the beam model to interactively con-
trol the curved shape of a leaf. Furthermore, we introduced an fBm noise function to simulate the
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rippled edges of a leaf. By adjusting the β and the phase of the generated noise, we implemented
various fractal patterns along leaf edges. Compared to previous modeling methods, our method
is not manually intensive and is easy to model numerous leaves with different shapes in a short
time. In future, we intend to extend our method to model flowers since flowers show similar wavy
phenomena on the edges of their petals.

References

[1] O. Deussen and B. Linterman, Digital Design of Nature: Computer Generated Plants and Organ-
ics, Springer Press, New York, 2005.

[2] P. Prusinkiewicz, M. Hammel and E. Mjolsness, Animation of Plant Development, In Proceedings
of ACM SIGGRAPH ’93, 1993, pp. 351-360.

[3] A. Runions, M. Fuhrer, B. Lane, P. Federl, A. Rolland-Lagan and P. Prusinkiewicz, Modeling and
visualization of leaf venation patterns, ACM Transactions on Graphics 24(3) (2005) 702-711.

[4] P. De Reffye, C. Edelin, J. Francon, M. Jaeger and C. Puech, Plant models faithful to botanical
structure and development, ACM SIGGRAPH Computer Graphics 22(4) (1998) 151-158.

[5] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants, Springer-Verlag Press,
New York, 1990.

[6] O. Deussen, P. Hanrahan, B. Lintermann, M. Mech, M. Pharr, P. Prusinkiewicz, Realistic modeling
and rendering of plant ecosystems, In Proceedings of ACM SIGGRAPH ’98, 1998, pp. 275-286.

[7] P. Prusinkiewicz, L. Mundermann, R. Karwowski and B Lane, The use of positional information
in the modeling of plants, In Proceedings of ACM SIGGRAPH ’01, 2001, pp. 289-300.

[8] T. Ijiri, M. Okabe, S. Owada, T. Igarashi, Floral diagrams and inflorescences: Interactive flower
modeling using botanical structural constraints, ACM Transactions on Graphics 24(3) (2005) 720-
726.

[9] L. Mundermann, P. MacMurchy, J. Pivovarov and P. Prusinkiewicz, Modeling lobed leaves, In
Proceedings of Computer Graphics International ’03, 2003, pp. 60-65.

[10] S. M. Hong, R. B. Simpson and G. V. G. Baranoski, Interactive venation-based leaf shape modeling,
Computer Animation and Virtual Worlds 16(3-4) (2005) 415-427.

[11] L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang and S. Kang, Image-based plant modeling, ACM
Transactions on Graphics 25(3) (2006) 772-778.

[12] E. Sharon, B. Roman, M. Marder, G. Shin and H. L. Swinney, Buckling cascades in free sheets,
Nature, 2002, pp. 419-579.

[13] E. Sharon, M. Marder and H. L. Swinney, Leaves, flowers and garbage bags: making waves,
American Scientist 92 (2004) 254-261.

[14] A. Fournier, D. Fussell and L. Carpenter, Computer rendering of stochastic models, Communica-
tion of the ACM 25 (1982) 371-384.

[15] F. K. Musgrave, C. E. Kolb and R. S. Mace, The synthesis and rendering of eroded fractal terrains,
Computer Graphics 23(3) (1989) 41-50.

[16] H. O. Peitgen, D. Saupe, The Science of Fractal Images, Springer-Verlag Press, New York, 1988.

[17] S. Hu, T. Fujimoto and N. Chiba, Pseudo-dynamics model of a cantilever beam for animating
flexible leaves and branches in wind field, The Journal of Computer Animation and Virtual Worlds
20(2-3) (2009) 279-287.

[18] J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation, Journal
of Algorithms 18(3) (1995) 548-585.


