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Abstract. The realistic animation of real-world trees is a challenging task because natural trees
have various morphology and internal dynamic properties. In this paper, we present an approach
to model and animate a specific tree by capturing the motion of its branches. We chose Kinect
V2 to record both the RGB and depth of motion of branches with markers. To obtain the three-
dimensional (3D) trajectory of branches, we used the mean-shift algorithm to track the markers
from color images generated by projecting a textured point cloud onto the image plane, and then
inversely mapped the tracking results in the image to 3D coordinates. Next, we performed a fast
Fourier transform on the tracked 3D positions to estimate the dynamic properties (i.e., the natural
frequency) of the branches. We constructed static tree models using a space colonization algorithm.
Given the dynamic properties and static tree models, we demonstrated that our approach can
produce realistic animation of trees in wind fields.
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1 Introduction

The realistic modeling and animation of vegetation is a significant problem because of the inherent
complexity of plants. The reconstruction of static tree models from images and point clouds has been
widely studied; however, there are few studies that explore the scheme for simulating the swaying of
trees in a wind field. Recently, motion capture has been extended from tracking human movement to
simulating plant motion. A passive optical system has been used in tree and maize motion capture [1,2],
and realistic animation can be achieved using the motion capture data. However, an optical system is
expensive and motion capture is limited for indoor trees. In contrast to an optical system, video-based
motion capture uses a camera, which has the advantage of low-cost and portability[3,4,5]. Although all
the aforementioned motion capture and animation methods generated reasonable results, the studies did
not explore the vibration relationship of branches.

In our work, we use Kinect to capture static tree point clouds and tree motion in a pulling and releasing
experiment, and then study the motion trajectory and dynamic properties (i.e., natural frequency) of
branches. Based on a single-view point cloud of a tree captured by Kinect, we use a space colonization
(SC) algorithm to reconstruct a static tree model. Then, we calculate the relative rotation angle between
a parent branch and a child branch, and extract the dynamic properties of branches using a fast Fourier
transform (FFT). Finally, we generate tree animations using the static tree model and the extracted
parameters. In this paper, we address the problem of outdoor motion capture by taking advantage of a
low-cost depth sensor, Kinect V2. The contributions of this paper are as follows:

– a low-cost method to capture and estimate the dynamic properties of a real-world tree with hierar-
chical structures; and

– a physics-guided model to animate trees in wind fields using the extracted properties and static tree
models.

2 Related Work

Dynamic property estimation. Tree dynamic properties play an important role in branch pruning
and vibration harvesting. In the early years, the dynamic properties of trees were measured using the
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relationship between the height and diameter at the breast (DBH) of tree branches[6,7] or a strain-stress
data logger[8]. In the past decade, researchers have used computer vision based methods to measure the
dynamic properties of trees. Sun et al.[4] used video clips of tree motion to extract parameters, and used
those parameters to synthesize the motion of an artificial tree model. Long et al.[1] used a passive optical
motion capture system to capture the motion of an indoor tree in a wind field, and extracted the wind
field to drive the motion of the reconstructed model. Both Sun et al. and Long et al. extracted parameters
based on force-displacement measurement, whereas in our work, we propose extracting parameters based
on the rotation angle. Wang et al.[9] used three synchronized Kinect V1s to capture the motion of indoor
potted plants, and used FEM to estimate Young’s modulus and the damping coefficient. Unlike the work
of Wang et al., we use Kinect V2 to capture the motion of outdoor trees.
Tree Animation. The study of the dynamic tree model began in the late 1990s. The first work that
simulated the stochastic motion of trees and grass was by Shiya and Fournier[10]. Because our work is
related to data-driven animation, we only discuss the closest works regarding that approach. Diener et
al.[3] used video-captured motion data to drive the artificial tree model. Long et al.[1] used the extracted
wind field from a three-dimensional (3D) sequence of reflective markers to drive the motion of a captured
tree. Although Long et al. and Diener et al. made use of captured data to simulate motion, they did
not establish a relation between the extracted parameters and physics-based animation model. Wang
et al.[9] obtained Young’s modulus and damping coefficients, and used an FEM model to simulate the
deformation of a small potted plant; however, this is time-consuming for a complex tree structure. The
latest work of data-driven tree animation was proposed by Hu et al.[11]. The researchers used a camera
or mobile phone to capture the motion of a tree outdoors. In our work, we take advantage of Kinect
V2, which can be used outdoors in weak light and simultaneously capture the depth and RGB of tree
motions.

3 Overview

Our motion capture and data-driven animation system consists of three parts:
First, we use Kinect V2 to collect the motion of a tree, which is driven by a pulling and releasing

experiment. To obtain the rotation angle in 3D coordinates, we project the textured point cloud of tree
motion onto the image plane first, and then perform tracking in the image plane. When we obtain the
trajectory in a two-dimensional (2D) image, we map it to 3D coordinates inversely, and calculate the
rotation angle based on the 3D trajectory. Based on the 3D rotation angle, we use an FFT on it and
obtain the spectrum of motion in the frequency domain. Motion capture and parameter analysis are
introduced in Sect. 4 and Sect. 5, respectively.

When we obtain the dynamic parameters, we use an SC algorithm to generate the skeleton of a
point cloud captured by Kinect outdoors. Once the static tree model is reconstructed and the dynamic
parameters are acquired, we establish the relation between the dynamic parameters and physics-based
animation model, and then synthesize tree motion. We discuss this in Sect. 6.

In Sect. 7, we present the results and analysis of our study and limitations are also included.

4 Motion Capture

Many approaches have been proposed to capture tree motions in wind or using a pulling and releasing
experiment[1,3,8,12]. The main equipment includes a strain-stress data logger[8], an electromagnetic
tracking system[12], and a camera[3]. Instead of the aforementioned devices, we use a low-cost depth
sensor to perform motion capture. Specifically, we record the motion of a tree using Microsoft Kinect
V2, which can capture motion outdoors and provide depth of scene. Figure 1a shows our motion capture
system, which consists of a Kinect V2 sensor and a desktop PC, which can be used to collect the motion
data of a tree outdoors.

We selected two outdoor Magnolia trees with heights and DBH of approximately 2.6m and 2.4cm,
respectively, and 3.3m and 4.94cm, respectively. To reduce occlusion, we conducted the capture in winter
on a leafless tree. Because of self-similarity in branching, it is difficult to search for features in motion data.
To perform accurate and efficient tracking for a tree with uncertain features is beyond the scope of our
work; thus, for simplicity, we pasted red makers with a width of approximately 3cm on a selected branch.
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Because of the limitation of the precision of Kinect, it cannot detect tiny branches; thus, we pasted red
markers on the first three level of branches, and for levels higher than three, we marked selected parts
of them. Tree motion was driven by pulling and releasing branches. To reduce measurement errors, the
Kinect direction was set approximately perpendicular to the motion plane.

Unlike video-based motion analysis approaches, our aim is to study tree motion and dynamic pa-
rameters in 3D space. However, tracking the motion of branches in a point cloud is difficult; thus, we
propose performing 2D tracking first and then mapping the 2D position to 3D coordinates. Hence, not
only do we obtain a creditable result, but also reduce the implementation complexity. Figure 1b shows
the back-projection of a textured point cloud and Fig. 1c shows the point cloud. From the recorded data
shown in Fig. 1c, we observed that the captured data preserved the main branch of the tree in both the
back-projection image and original point cloud.

Fig. 1: Scene setting of tree motion capture and captured data using Kinect: (a) capture system; (b)
back-projection image of textured point cloud; (c) point cloud.

5 Parameter Estimation

5.1 Semi-Automatic Tracking

To obtain the motion trajectory and natural frequency of branches, we need to track the motion of
branches. Before capturing, we bound red markers on branches to provide a good feature to track. As
described in the previous section, we projected the textured point cloud onto a 2D image; thus, we
performed 2D tracking first. The mean-shift algorithm is efficient for color-based feature tracking[13]
and we tracked a window with a fixed size during the tracking session; hence, we used the algorithm to
track the markers on branches. The workflow is as follows:
Step 1: Select the tracked object. Because of the multi-markers in tree branches, we interactively selected
a tracking target.
Step 2: Build a tracking model. Based on the CamShift algorithm, we set the tracking trait as a red hue
channel, and built a tracking model with a histogram of the selected target.
Step 3: Calculate the probability of the image. According to the histogram of the tracking target, the
back-projection of the current frame is calculated.
Sept 4: Calculate the mean-shift vector. The mean-shift vector is calculated using the center and centroid
of the tracking window.
Step 5: Calculate the stable tracking window. After Step 4, we obtain the centroid and mean-shift vector,
and move the tracking window to the new centroid along with the mean-shift vector. We repeat Steps 4
and 5, and the mean-shift algorithm converges to a stable target area.
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Step 6: Track the object continuously. To achieve continuous tracking of the object, we set the next
frame, starting with the tracking window as the current frame’s stable tracking window, and repeat
Steps 4 - 6 until all frames are processed.

Constrained by the precision of Kinect and motion blur caused by high-speed movement, the tracking
feature becomes weak and tracking may be interrupted. In our work, we adopt two approaches to manage
the miss-tracking problem.

The first approach is to consider frames with a weak tracking feature. We set the centroid of the
tracking window at the current frame interactively when there were no features to track in the tracking
window of the current frame.

To solve the problem of tiny branches with movement beyond the pre-designed search area, we
increased the search area and then searched the target iteratively from four directions. Because of the
locality of movement and continuous characteristic of the motion sequence, when increasing the search
window, the target would definitely be tracked continuously.

Figure 2 shows the tracking results of one branch in selected frames, where the blue box represents
the initial window position and the red box represents the stable tracking results.

Fig. 2: Continuous frames of the tracking results of a marker using the mean-shift algorithm.

5.2 Motion Trajectory of a Branch

The motion trajectory of branches is complicated and unpredictable. James et al.[8] captured the motion
of a branch using a strain and stress data logger in the north and west directions only, and synthesized
the motion trajectory in the plane through this two-direction displacement. In our work, we obtained
motion in the plane of branches using mean-shift tracking; however, motion in the plane cannot display
the realistic trajectory of a branch. In a motion capture session, we obtained the textured point cloud by
combining the image frame and corresponding depth, and projected the textured point cloud onto the
image plane. To obtain the 3D position of an image pixel in the projection image as seen in Fig. 3, we
retrieved a corresponding image from the point cloud according to the centroid, avoiding re-executing
the coordinate transformation of Kinect based on the original depth.

5.3 Dynamic Property Estimation

Natural Frequency. Thus far, we have obtained the tracked feature position (3D) along frames. In each
frame, we built an approximate hierarchical structure by connecting the feature positions represented by
the tracked feature. Mapping the motion of branches to the approximate tree structure and calculating the
rotation angle between a parent branch and a child branch rather than using displacement, we obtained
the motion of a branch. Considering that the movement of branches is continuous and interrelated,
the displacement of the sub-branches contains the displacement of the parent branches. To obtain the
pure motion of a branch that eliminates the interference of the parent branches, we propose calculating
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Fig. 3: Trajectory of a branch: (left) front view of the trajectory of the selected branch; (right) the first
80 frames of the selected branch.

the relative rotation angle to avoid the displacement of the parent branches in the global coordinate
system. Therefore, if the parent branches are set as the reference coordinate system, the motion of the
sub-branches relative to the parent branches can be obtained easily.

Figure 4 illustrates our relative rotation angle calculation approach. When pulling and releasing the
tree, we obtained the ith frame, as shown in Fig. 4b, where the red arrow indicates the direction of the
parent branch and θi represents rotation angle at the ith frame between the parent branch and the child
branch. The calculation of θi uses a plain vector operation and triangular calculation principle described
as follows:

θi = arccos

(
v(AC)i

� v(CD)i∥∥v(AC)i

∥∥ ∥∥v(CD)i

∥∥
)
. (1)

Fig. 4: Illustration of the rotation angle between the child branch and the parent branch: (a) approximate
tree structure; (b) the ith frame.

We calculated the rotation angle in 3D coordinates using the method shown in Fig. 4 and obtained
the rotation angle sequence in the time domain (as seen in Fig. 6). Motion in the time domain cannot
reveal the inherent pattern of branch motion. Therefore, we converted the rotation angle sequence to
a frequency domain using an FFT (as shown in Fig. 7). From the signal in the frequency domain,
we can clearly analyze the inherent properties of motion. Figure 5 shows the hierarchical structure of
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our simplified tree, where the numbers 1–6 represent force-bearing points and the letters A–I and a–g
represent branches.

Figure 6 shows the change in the rotation angles of four selected branches (C, D, I, F in Fig. 5 tree
1) in the time domain after tracking 409 frames and Fig. 7 shows the corresponding natural frequency of
selected branches in Fig. 6. From the frequency domain spectrum results, we observed that each selected
branch had one or more dominant frequency.

Fig. 5: Illustration of the simplified tree model.

Damping Ratio. In a pulling and releasing experiment, the movement of the tree stops because of
damping. Damping is complicated and consists of several components. To date, the energy dissipation
mechanism has not yet been fully elucidated and is usually determined using experimental methods. In
practice, researchers relate damping to velocity, and use viscous damping to represent damping in most
conditions.

In [14], James proposed several methods to calculate damping: a displacement curve fitting method,
logarithmic decay method, and half-band method. Inspired by [4], we derived our damping ratio calcu-
lation approach.

In Sun et al.’s[4] paper, damping coefficient γ and angular frequency w satisfy:

γ = ∆w

∆w = 2π
∆v

NT
,

(2)

where ∆v is a sample interval and N,T represents the total number of samples and periods, respectively.
In the frequency domain, angular frequency w and frequency f have the following relation:

w = 2πf. (3)

From the work of [4], we learned that damping coefficient γ and damping ratio ξ satisfy

γ = 4πfξ. (4)

Substituting (3) and (4) into (2), we obtain

4πfξ = 2π∆f. (5)
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Fig. 6: Changes in the rotation angles: (top) branch C and branch D; (bottom) branch I and branch F.

Fig. 7: Natural frequency of branches that correspond to Fig. 6.
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We simplify (5), and derive our damping ratio calculation formula in the frequency domain:

ξ =
∆f

2f
, (6)

where ∆f represents the frequency variation after the frequency attenuates to half.

5.4 Pattern of the Natural Frequency

To explore the relationship between the natural frequency of different branches, we conducted three
comparison experiments on two Magnolia trees. The three experiments were designed as follows: (1)
apply approximate force at different positions of different branches; (2) use similar tree species with
different tree structures; and (3) apply different forces at the same position of the same branch. Figure
8 shows one frame of motion capture in the comparison experiments.

Fig. 8: Different force-bearing point and force applied to branches: (a-c) the different force-bearing points;
(d-e) a different force at the same force-bearing point.

Figure 9 shows the results for different force-bearing points with an approximate force exerted on
them. From the spectrum of the natural frequency, we observed that the first dominant natural frequencies
were almost the same (approximately 1.5 Hz). Figure 10 shows the results of different tree structures
for one pulling and releasing test. We selected four branches from two trees, and the response spectrum
of the vibration shows that the dominant natural frequency of each tree was the same (with tree 1 at
1.5 Hz and tree 2 at 1.2 Hz). Figure 11 shows the results of different forces at the same forced point.
Similarly, the natural frequency of different branches was almost the same, but a larger force had a peak
value greater than the smaller force.

As shown in Fig. 9–Fig. 11, we can clearly conclude that the first dominant natural frequency of the
first three levels of branches were the same.

Fig. 9: Natural frequency comparison of the same branch with a force exerted at a different position:
(left) branch C; (right) branch I.
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Fig. 10: Natural frequencies of two different tree structures.

Fig. 11: Influence of different pulling forces on the natural frequency on the same branch: (left) branch
A; (right) branch I.

Figure 12 shows the spectrum of branch J at different forced points. Clearly, high level branches
show more complicated vibrations (multiple modal), but they also have in common that they have one
dominant frequency near 2.4 Hz.

Fig. 12: Spectrum of branch J at different force-bearing points.

6 Tree Modeling and Animation

6.1 Tree Modeling

The generation of tree models is a challenging task which has been studied widely in recent years. In
our paper, we chose point cloud based tree modeling because tree point clouds are easy to capture using
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Kinect. Runions et al.[15] proposed an SC algorithm to generate the tree model of an artificial point
cloud and canopy. The SC algorithm resolves branch intersection effectively, and its principle is based on
plant growth theory, which is illustrated as competing space for growth between skeleton nodes. In our
work, after capturing the tree point cloud using Kinect, we used an SC algorithm to generate the tree
skeleton. Instead of rendering the tree using an L-system, we designed a skeleton node data structure
and branch data structure, and constructed a tree hierarchy structured using a self-implemented engine.
Finally, we generated a tree geometric model with generalized cylinders, for which the radius of a branch
was estimated using the pipe model.

6.2 Tree Animation

Because we obtained the static tree model and dynamic properties of branches, we then used the model
and parameters to animate the tree. Many approaches have been proposed to animate tree movement in
a wind field. To generate tree motion using a static model and dynamic parameters, we need to determine
a feasible physics-based model to implement data-driven tree animation. Hu et al. [5] proposed a tree
animation model based on modal analysis, which takes the branch frequency and damping ratio into
account. Inspired by Hu et al.’s work, we assumed that a branch was a curved beam and used a simplified
physics-based tree animation model.

Fig. 13: Our curved branch deformation model.

As seen in Fig. 13a, four segments that consisted of a curved beam (P0P1,P1P2,
P2P3,P3P4) and located in local coordinate (u,v,w) were subjected to a local net force F(t).

Similar to Hu et al.’s [5] method, we took advantage of modal analysis to establish and solve the
dynamic equation of branch motion. From the frequency signal (as seen in Fig. 9–Fig.11), we assumed
that the first dominant frequency had a significant impact on motion. Based on this assumption, we only
considered the first dominant mode because the remaining modes were small. The dynamic equation
that combines the measured parameters is

ẍ (t) + 4πξfẋ (t) + 4π2f2x (t) =
|F (t)|
m

, (7)

where f and ξ are the natural frequency and damping ratio of the first mode, respectively, m is the mass
branch, and x(t) is the displacement of the branch. We decomposed F(t) into the (u,v,w) coordinate, and
represented it as (Fu(t), 0, Fw(t)) because we considered that the branch did not stretch in the v direction.
Equation (7) can be solved using the explicit Euler method, and we converted the displacement x(t) to
an elasticity force according to F ′ (t) = 4π2f2x (t) to control the deformation of the curved branch.

Our final aim was to calculate the rotation angle along with the force direction (as seen in Fig. 13b).
Similar to Ref. [16], we converted the curved beam to a spring system and resolved the rotation angle
using Hooke’s law, which explains that a bending angle is proportional to a bending moment. For further
information on the calculation of the rotation angle, see Ref. [16].
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7 Results and Limitations

All the modeling and animation tests were performed on a desktop PC with an Intel Core i3 Duo CPU
at 3.8 GHz and an NVIDIA GeForce GTX 750 video card.
Modeling Results. Figure 14 shows the reconstruction results of the tree point cloud captured by Kinect
and reconstructed using an SC algorithm. Comparing the point cloud and generated tree geometric
model, we conclude that the tree model preserved the detail of branching and tiny branches, and agreed
with the original captured point cloud.

Fig. 14: Reconstructed static tree model using an SC algorithm. (a, c) Two reconstructed tree models;
(b, d) the tree models agreed with the point clouds.

Parameter Estimation. Table 1 shows the parameters of the marked branches captured by Kinect. The
results show that some branches vibrated at a frequency of 1.39 Hz, but more than 85 % of the branches
vibrated at a frequency of 1.46 Hz. From the response spectrum of the vibration, we clearly know that
higher level branches demonstrated a more complex vibration modal (as shown in Fig. 12), but it also
contained the main stem vibration modal at 1.46 Hz. Based on this assumption, we only extracted the
first mode, which had a natural frequency of 1.46 Hz, and exploited this frequency to build a dynamic
equation of branch motion.

Figure 15 shows the damping ratio relation of selected branches corresponding to Table 1. The damp-
ing ratios were disorganized; however, we approximately thought that branches with a larger force pulling
on them would have a higher damping ratio, with the presupposition that we ignored the measurement
error. Because there were fewer captured branches in the reconstructed model, we used the statistical
characteristics of the acquired data of some branches to interpolate the damping ratio of the remaining
branches. For a more detailed illustration of damping ratio estimation, see Ref. [5].
Animation Results. Figure 16 shows the animation of two Magnolia trees in a wind field generated by
our method. The wind field was generated using 1/fβ noise [17]. One advantage of our physics-based
tree model with extracted parameters is the capability to respond to any external force and any model
by tuning the parameters.
Limitations. Although we could efficiently reconstruct a static tree model from a Kinect-V2-captured
point cloud, constrained by the precision of the device, the detailed branches in the canopy may have been
lost. Additionally, during the motion capture session, tiny branches could not be captured because of the
precision of Kinect. Second, we only discussed the first three levels of branches’ frequency patterns and
only used one dominant frequency to generate tree motion. Thus, researching more levels of a branch’s
natural frequency will be a challenging and interesting issue.

8 Conclusion

We proposed a semi-automatic approach to track the markers on a branch and mapped the 2D tracking
results to 3D to obtain the 3D trajectory. Based on the 3D trajectory, we derived physical parameters
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Fig. 15: Damping ratio of branches with different forces.

Fig. 16: Several frames from the animation of two different trees corresponding to Fig. 14 in a wind field.
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Table 1: Parameters of selected branches.
small force large force

branch ID f ξ f ξ

A 1.46 0.104 1.46 0.120
C 1.46 0.086 1.46 0.081
D 1.46 0.072 1.46 0.075
E 1.46 0.072 1.46 0.074
B 1.46 0.084 1.39 0.077
I 1.46 0.133 1.46 0.096
H 1.46 0.069 1.46 0.191
F 1.39 0.077 1.46 0.094
G 1.39 0.089 1.46 0.141
J 1.46 0.241 1.46 0.093

(i.e., the natural frequency and damping ratio) of an outdoor tree. To measure the motion of a branch,
we proposed a relative rotation angle principle to calculate the rotation angle of the branch in local
coordinates. To analyze the natural frequency and damping ratio of branches, we converted the vibration
of a branch in the time domain to the frequency domain using FFT analysis. Then, we applied the
extracted parameters and the static tree model that was reconstructed using an SC algorithm to a
physics-based tree animating model. The animation results showed that our approach was feasible for
generating realistic tree animations from motion captured data.

Supplementary

An accompanying video can be accessed at Demo link.
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