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A Convex Hull-Based Feature Descriptor for
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Abstract—Classifying tree species from point clouds acquired
by LiDAR scanning systems is important in many applications
including remote sensing, virtual reality, and forestry inventory.
Compared with terrestrial laser scanning systems, airborne
laser scanning (ALS) systems can acquire large-scale tree point
clouds from only a single scan. However, ALS point clouds
have the disadvantages of low density, uneven distribution,
and unclear branch structure, making the classification of tree
species from ALS point clouds a challenging task. Recently,
deep learning-based classification approaches such as PointNet++,
which can operate directly on three-dimensional point sets, have
been intensively studied in scene classification. However, the
classification precision of learning-based approaches for point
clouds relies on point coordinates and features such as normals.
Unlike the face normals of regular objects, trees have complex
branch structures and detailed leaves which are difficult to
capture using ALS systems. Hence, it might be inappropriate
to use the normals of ALS tree points for classification. In this
paper, we propose a novel convex hull-based feature descriptor
for tree species classification using the deep learning network
PointNet++. To evaluate the effectiveness of our approach, three
additional feature descriptors (normal descriptor, alpha shape-
based descriptor, and covariance descriptor) are also investigated
with PointNet++. The results show that the convex hull-based
feature descriptor can achieve 86.6% overall accuracy in tree
species classification, which is notably higher than the other three
descriptors.

Index Terms—ALS point clouds, feature descriptor, deep
learning, tree species, classification

I. INTRODUCTION

TREE species information is important for modeling trees
in virtual reality and biomass calculation [1] in forestry

inventory. Recently, laser scanning has been widely applied
to obtain tree point clouds, and many studies have been
conducted on the classification of tree species from point
clouds [2]. Laser scanning systems can be roughly catego-
rized into airborne laser scanning (ALS) [3], terrestrial laser
scanning (TLS) [2] and mobile laser scanning (MLS) [4, 5]
systems. For densely covered forests or jungles that are
difficult for humans to reach, ALS systems have the advantage
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of capturing panoramic views at a distance [6]. However, an
ALS system mainly captures the top of the canopy, and has
limitations in capturing the branches and trunks, which will
cause uneven distribution of the tree point clouds. Compared
with the hundreds or even thousands of points/m2 obtainable
with MLS and TLS, the density of tree point clouds obtained
by ALS is relatively low [4]. Therefore, we intend to find a
more suitable classification method for low-density ALS point
clouds.

Recently, tree species classification methods for point clouds
have been widely studied [2, 3, 7]. These methods in-
clude multi-view representation method [2, 8], feature-based
method [3], and spectral-based method [9]. Multi-view repre-
sentation method projects 3D point clouds onto 2D images,
which increases the amount of data but consumes more time
and space [10]. For feature-based method, the selected features
are important to the classification results. However, for ALS
point clouds, features such as topological structure, 3D texture,
diameter at breast height and other structural features are
difficult to extract directly. Spectral-based method requires
obtaining additional spectral information for classification,
which is inappropriate for classification cases that only have
point information. Therefore, we employ the deep learning
network PointNet++ for tree species classification from ALS
point clouds because PointNet++ can operate directly on point
coordinates without additional captured features or spectral
information [10].

Fig. 1: Comparison of normals from gradually downsampled
tree point clouds. (a) The normals of original tree point

cloud with 7, 000 points; (b) The normals of downsampled
point cloud of (a) with 3, 500 points; (c) The normals of

downsampled point cloud of (a) with 1, 750 points.

Briechle et al. [11] first used PointNet++ to semantically
label coniferous and deciduous trees on ALS point clouds.
Based on 14, 000 tested tree datasets, their method achieved
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Fig. 2: Overview of tree species classification including segmentation, denoising and resampling, computation of feature
descriptors, network training and tree species classification steps.

up to 90% classification accuracy for coniferous trees and 81%
accuracy for deciduous trees. However, they only considered
the point coordinates for broad tree species classification;
employing additional features for detailed tree species clas-
sification remained a challenge. The classification accuracy of
PointNet++ depends on the point coordinates and the charac-
teristics of points such as normals [10]. Unlike regular objects,
trees have intricate branching structures and tiny leaves that
are difficult for ALS systems to capture [6]. Moreover, for the
same tree with different sampling densities, the point normals
at the same place will differ greatly as shown in the circles
of Fig. 1. Therefore, it is necessary to find another feature to
replace normals for detailed tree species classification. In this
paper, we introduce a new feature descriptor based on convex
hulls, which has the advantage of avoiding the sudden change
of normal directions of tree points caused by incomplete and
uneven sampling of ALS systems. The main contributions of
our work are as follows:
• A novel convex hull-based descriptor that can represent

the characteristics of ALS tree point clouds and improve
the classification accuracy of ALS tree point clouds using
PointNet++.

• We verify that PointNet++ can be used for more detailed
classification of ALS tree point clouds, not just coniferous
and deciduous trees.

II. METHODOLOGY

Fig. 2 shows the workflow of our tree species classification
method. First, we segment the forest point cloud to individual
trees. Next, we preprocess the individual tree by removing
noise and resampling. Then, we compute the feature descrip-
tors for each point to enrich the features of the tree point
cloud. Finally, we input the point coordinates and features
to PointNet++ to train network parameters and classify tree
species.

A. Individual tree point clouds segmentation

We used the classic marker-controlled watershed algorithm
to segment individual trees [12]. First, we projected the point
cloud to a height map image. Then, the relative canopy height
was calculated and interpolated into a raster Canopy Height
Model (CHM) from the image. Next, we derived a variable
window size in CHM by using a power law to describe the
relation between crown radius and height [13], and the tree
tops were detected by finding the local maxima within the

window size. Using the computed CHM and the tree top
positions, the marker-controlled watershed segmentation was
used to generate 2D labeled matrices and mark different trees
with different colors. Finally, we extracted the individual tree
point cloud from the original dataset and the 2D labeled
matrices with segmentation information as shown in Fig. 3.

Fig. 3: The original ALS tree point clouds are segmented
into individual tree point clouds by the marker-controlled

watershed algorithm. (a) Original point clouds; (b)
Segmented tree point clouds labeled with different colors.

B. Noise removal and resampling

Because of the complex forest environment, trees usually
intersect and occlude each other; thus, the segmented individ-
ual tree point clouds are not clean. Moreover, the number of
points for each tree is not identical, which is not appropriate
for network training in PointNet++. Therefore, each tree point
cloud was preprocessed before being applied to classification.

To remove ground noise, we used the voxel-based up-
ward filter proposed by Guan et al. [5]. Subsequently, we
used statistical filters to remove over-segmented or under-
segmented points. Given a set of tree point clouds S =
{p1, p2, · · · , pn} ∈ R3. For each point in the set, we found its
k(k = 32) neighborhood points through the nearest k search,
and calculated the mean distance from this point to all its
neighboring points. Assuming that the resulting distribution
is Gaussian, we then calculated the mean µ and the standard
deviation σ of all points on this tree. In the set S, the points
with a mean neighborhood distance greater than (µ+λσ) were
regarded as outliers and then removed, where λ was set as 1.0
in our work.

Because the number of input points for PointNet++ was
constant, we used the following resampling method to unify
the number of points for each individual tree. When a tree had
more than 2, 048 points, we used a downsampling method to
reduce the points to 2, 048 by introducing a 3D voxel grid. The
coordinates of all the points in each voxel were approximated
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by using their centroid. For trees with fewer than 2, 048 points,
we used an upsampling method to increase the number of
points by randomly duplicating points from the point cloud
to reinforce coordinates until they reach 2, 048. Finally, all
the individual tree point clouds in the dataset were scaled and
normalized in a unit sphere space.

C. Compute feature descriptors

The basic input of PointNet++ is only coordinates. How-
ever, classification accuracy can be improved by integrating
additional features such as laser intensity, surface normals,
and multispectral features [11]. However, the distribution of
an ALS tree point cloud is irregular with many holes; hence,
traditional feature descriptors may not be appropriate for
representing the characteristics of tree point clouds. In this
paper, we present four feature descriptors, including a normal
descriptor, convex hull-based descriptor, alpha-shape based
descriptor, and covariance descriptor as additional input for
the tree point cloud classification experiment.

a) Normal descriptor: Given a tree point cloud set S =
{p1, p2, · · · , pn} ∈ R3, the problem of determining the normal
of a point can be transformed to a least-squares plane fitting
estimation problem, which can be simplified to analyze the
eigenvectors and eigenvalues of the covariance matrix at that
point. This covariance matrix is created from the k-nearest
neighbors of the point to be estimated. Specifically, for each
point pi = (xi, yi, zi), the corresponding covariance matrix
Ci is represented by:

Ci =
1

k

k∑
j=1

(pj − p̄)(pj − p̄)T, (1)

where p̄ is the centroid of the k-neighborhood of pi. By solving
the following linear equation:

Ci · vi
m = λim · vi

m,m ∈ {1, 2, 3}, (2)

we can compute the m-th eigenvector vi
m and the eigenvalue

λim of pi. The eigenvector corresponding to the minimum
eigenvalue is then approximated as the normal vector of the
point.

Through the function estimate global k neighbor scale()
from the open source library CGAL [14], we can find an
appropriate global scale of the point cloud, and then compute
normals using the CGAL function pca estimate normals().
The estimated normals of the tree point cloud from Fig. 2 are
shown in Fig. 4(a).

b) Convex hull-based descriptor: Motivated by the ob-
servation that trees in the same species have similar crown
shapes and the sampling density will not overly affect the
macro-shape of a tree, we introduce a 3D convex hull to
describe the crown shape of a tree point cloud, implemented
with the quickhull algorithm [15].

Once the convex hull is computed, the feature descriptor
of each point is represented by the orientation vector of the
point relative to its convex hull, which can be categorized into
three cases. (i) If the point is on the vertex of a triangular
patch of the convex hull, the orientation vector of the point
is represented by vi =

∑k
j=1 nj/k, where nj is the normal

Fig. 4: Visualization results of four feature descriptors of the
tree point cloud in Fig. 2. (a) Normal descriptor; (b) Convex
hull-based descriptor; (c) Alpha shape-based descriptor; (d)

Covariance descriptor.

of the j-th triangle adjacent to point pi. (ii) If the point is
inside a triangular patch, the orientation vector of the point is
denoted by:

vi =
∑

m∈{1,2,3}

(1− dm∑
j∈{1,2,3} dj

)nm, (3)

where nm is the m-th orientation vector of the three vertices
on the triangular patch and dm is the distance from the current
point to the m-th vertex. (iii) If the point is inside the convex
hull, the ray from the centroid of the whole point cloud to the
point is formed firstly, then the intersecting triangular patch
of the ray is found, and the orientation vector formed at the
intersection point according to (i) or (ii) is used to represent
vi.

c) Alpha shape-based descriptor: In contrast to a convex
hull descriptor, an alpha shape (α-shape) [16] descriptor is able
to generate more compact hulls of input points to describe
the structure of the input by controlling a parameter α. If
the value of α is large, the created shape will degenerate
into a convex hull. However, a small α value will generate
a concave-like hull with holes. Therefore, it is crucial to
choose a good α value to form a hull on the tree point
cloud as tightly as possible. Moreover, the created hull should
consist of a number of singular triangular facets with as
few holes as possible. We found an optimal α value us-
ing the function find optimal alpha() from CGAL [14].
Then we computed the triangle surfaces using the function
get alpha shape facets(). Fig. 4(c) shows a connected α-
shape of the tree point cloud in Fig. 2. The calculation of the
orientation vector for each tree point is similar to the convex
hull-based descriptor. However, if a point is inside an α-shape,
the ray from the centroid of the point cloud to the point may
intersect the α-shape several times. In this case, we compute
the distances between the point and the intersected triangular
patch, and the triangular patch with the minimum distance is
set as the candidate surface and the corresponding intersection
point is used to calculate the orientation vector.

d) Covariance descriptor: A covariance descriptor has
the advantage of describing shape, location and color informa-
tion for images and point clouds, and it is robust to changes
in rotation and illumination. Therefore, we also consider the
covariance descriptor in our tree species classification experi-
ments. According to the covariance matrix of a point estimated
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in Eq. (1), we define the covariance descriptor σm(pi) from
the eigenvalues of the covariance matrix by:

σm(pi) =
λim∑

j∈{1,2,3} λ
i
j

,m ∈ {1, 2, 3}. (4)

Fig. 4(d) illustrates the dominant covariance feature σ3(pi)
(σ3(pi) > σ2(pi) > σ1(pi)) represented by different colors,
where the component of the covariance descriptor is linearly
converted to a RGB color in a colormap. From the image, we
can observe that yellow and green colors are mainly distributed
on the area of branches and leaves, and red color is mainly
distributed on the area of the trunk.

D. Deep learning network

We use the PointNet++ deep learning network as the
classifier. Without rasterization, the network directly uses the
coordinates of points as input to retain 3D spatial information.
Moreover, it uses a density-adaptive layered network, which
can combine features of different scale regions. Thus, good
results can be achieved for classifying non-uniform sparse
ALS point clouds. In this experiment, we set the number of
object categories as 4, batch size as 8, and point number
as 2048. The rest parameters such as initial learning rate,
optimization algorithm, momentum value are identical to the
work of Qi et al. [10]

III. RESULTS AND DISCUSSION

We used an airborne LiDAR scanning system to acquire
tree point clouds. The system consisted of a SwissDrones
Dragon35 unmanned aerial vehicle (UAV) and a scanning
device (Riegl Vux-Sys). The point cloud used in this paper
was collected from a countryside in Chang’an District, Xi’an,
Shanxi Province, China. The UAV has a flying height of
about 200m and the sampling density of point clouds was
approximately 40points/m2. Fig. 5(a) shows a grove of tree
point clouds scanned by our ALS system. The main tree
species in this area are: T1: Poplar, T2: Birch, T3: Camphor
tree, T4: Purple Leaf Plum, as shown in Fig. 6. After deploying
LiDAR scanning, we conducted a field investigation to confirm
the local tree species and collect field data. The comparison
between the field data and the point cloud data is shown in
Fig. 5. Fig. 5(b) shows the real scene photograph captured
by a camera, and Fig. 5(c) shows the corresponding point
cloud scene captured by the ALS system. We subsequently
conducted PointNet++ training on an Ubuntu 16.0 OS with an
Nvidia Quadro K620 graphics card. The computing platform
was CUDA8.0 with the cuDNN6.1 acceleration library.

After the segmentation of individual tree point clouds, we
used the voxel-based upward-growing filtering [5] to remove
ground points. We divided the point cloud space into 21×21×
17 voxel blocks, and set the height threshold of 9 and distance
threshold of 0.4. Next, we manually labeled species of the
tree point clouds according to the field investigation. In our
experiment, we annotated 1, 330 tree point clouds including
582 poplar, 446 birch, 90 camphor and 212 purple-leaf plum
trees. Among them, 890 tree samples were used for the training
set and 440 tree samples were used for the test set. We then

Fig. 5: Comparison of photograph and point cloud data in the
same place. (a) A grove of trees scanned by our ALS system;
(b) Photograph taken during the field investigation; (c) Point
cloud correspondence to the similar viewpoint in scene (b).

Fig. 6: Four kinds of tree species in our study. Left is the
real photo of each tree species; right is the point cloud of

each tree species. (T1: Poplar, T2: Birch, T3: Camphor tree,
T4: Purple-leaf plum).

input the training set to PointNet++; the average training time
was approximately 6 hours. We set the input number of points
as 2, 048 because it was closest to the average number of
points in an ALS tree point cloud in our data.

TABLE I: Classification results of four feature descriptors

Method Input features Accuracy

PointNet++ Coordinate 72.7%

PointNet++ Coordinate + Normal descriptor 77.3%

PointNet++ Coordinate + Convex hull-based descriptor 86.6%

PointNet++ Coordinate + Alpha shape-based descriptor 78.4%

PointNet++ Coordinate + Covariance descriptor 82.0%

In our experiment, we tested four kinds of feature descrip-
tors with the PointNet++ network for classifying ALS tree
point clouds. As shown in Table I, the overall classification
accuracy when using only the point coordinates as input
was 72.7%, which is clearly lower than the accuracy with
additional feature descriptors that enrich the features of input
tree point clouds. The accuracy using the normal descriptor
was 77.3%, which was lower than the accuracies obtained
with the other feature-based descriptors. For a sparse tree
point cloud with no obvious branch details, the normals are
disordered at the details, which may provide incorrect structure
information to the neural network. Therefore, the normals
of ALS tree point clouds might not be good features for
tree species classification. The accuracy of the alpha shape-
based descriptor was 78.4%, an improvement over the normal
descriptor because the α-shape could alleviate the error of
normals caused by unevenly distributed tiny branches and
leaves at small scales. However, the alpha-shape of a tree
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point cloud is sensitive to changes in crown shapes and the α
value, and quite different hulls can be generated even for the
same tree species. In contrast to the normal and alpha-shape
based descriptors, the classification accuracy of the covariance
descriptor was 82.0%, which is a relatively good result, since
this descriptor has the potential to identify trunks, branches
and leaves as shown in Fig. 4(d).

The convex hull-based descriptor achieved a classification
accuracy of 86.6%, which was 13.9% higher than that of input
point coordinates only, and 9.3% higher than that using the
normal descriptor. This is because the convex hull represents
a tree point cloud’s crown shape, while ignoring the cloud’s
density and the details of branches and leaves. Since the shapes
of the same tree species are similar, the convex hulls generated
from different individuals of the same tree species will also
be similar. Moreover, the change in shape of a convex hull is
relatively small even for the same tree with different sampling
density, and the orientation vectors of points based on a convex
hull are more stable than vectors generated from the normal
or alpha-shape based descriptors. Therefore, our convex hull-
based descriptor can be used as an effective feature descriptor
for ALS tree point cloud classification.

We have also implemented Deep Belief Network (DBN)
method [2] as a comparison to our method. First, We projected
2D images of the four kinds of tree species from 3D tree point
clouds using the rotation angle 10◦ [2]. Then, we trained the
DBN network and the overall classification accuracy of the
ALS tree point cloud is 71.8%, which is 0.9% lower than
the classification accuracy of coordinates and 14.8% lower
than the classification accuracy of convex-hull based descriptor
using PointNet++. Moreover, the training time of DBN is more
than 30 hours, that is about 5 times longer than PointNet++.

IV. CONCLUSION

In this paper, we propose a convex hull-based feature
descriptor for tree species classification, which can represent
the features of low-density tree point clouds very well. In
our experiment, we test four kinds of feature descriptors with
the PointNet++ network. The experimental results show that
the convex hull-based feature descriptor achieves the best
result and that the normal descriptor is possibly poor for
representing ALS tree point clouds. In addition, we verify
that the PointNet++ is a promising network for classifying
more specific tree species from ALS tree point cloud, not
just for coniferous and deciduous trees. In future work, we
intend to expand the tree dataset by considering more tree
species and annotating more tree point clouds to augment the
imbalanced dataset, and improve the accuracy of tree species
classification. Furthermore, the marker-controlled watershed
segmentation method will lead to under or over segmentation
problem and more advanced segmentation algorithm should
be considered.
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