
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2023 1

A Semi-automatic Oriental Ink Painting Framework
for Robotic Drawing from 3D Models
Hao Jin1, Minghui Lian1, Shicheng Qiu1, Xuxu Han1, Xizhi Zhao1, Long Yang1,

Zhiyi Zhang1, Haoran Xie2, Kouichi Konno3 and Shaojun Hu1

Abstract—Creating visually pleasing stylized ink paintings
from 3D models is a challenge in robotic manipulation. We
propose a semi-automatic framework that can extract expressive
strokes from 3D models and draw them in oriental ink painting
styles by using a robotic arm. The framework consists of a
simulation stage and a robotic drawing stage. In the simulation
stage, geometrical contours were automatically extracted from
a certain viewpoint and a neural network was employed to
create simplified contours. Then, expressive digital strokes were
generated after interactive editing according to user’s aesthetic
understanding. In the robotic drawing stage, an optimization
method was presented for drawing smooth and physically con-
sistent strokes to the digital strokes, and two oriental ink painting
styles termed as Noutan (shade) and Kasure (scratchiness) were
applied to the strokes by robotic control of a brush’s translation,
dipping and scraping. Unlike existing methods that concentrate
on generating paintings from 2D images, our framework has the
advantage of rendering stylized ink paintings from 3D models by
using a consumer-grade robotic arm. We evaluate the proposed
framework by taking 3 standard models and a user-defined model
as examples. The results show that our framework is able to draw
visually pleasing oriental ink paintings with expressive strokes.

Index Terms—art and entertainment robotics, robotic drawing,
3D models

I. INTRODUCTION

ORIENTAL ink painting, also known as Shuimohua
in China and Suibokuga in Japan, is an ancient

monochrome painting art that abstracts complex object into
a few expressive strokes and draws the strokes on a rice paper
by skillfully using black ink, water and a soft brush. The
philosophy of oriental ink painting is similar to the concept
of “less is more” from the minimalist [1]. However, it is
difficult for common people or robots to draw aesthetically
pleasing paintings because even a single stroke can produce
considerable variations in shading, and an artist may spend
years to master the drawing skills. Moreover, robotic painting

Manuscript received: March, 29, 2023; First revised April, 19, 2023; Second
revised July, 8, 2023; Accepted August, 8, 2023.

This work was supported in part by the Natural Science Basis Research
(NSBR) Plan of Shaanxi under Grant 2022JM-363, the Key Project of Shaanxi
Provision-City Linkage under Grant 2022GD-TSLD-53 and the National
Natural Science Foundation of China under Grant 61303124. (Corresponding
author: Shaojun Hu.)

1College of Information Engineering, Northwest A&F University, Yangling,
Xianyang, China hsj@nwsuaf.edu.cn

2Japan Advanced Institute of Science and Technology, Ishikawa, Japan
xie@jaist.ac.jp

3Faculty of Science and Engineering, Iwate University, Morioka, Japan
konno@cis.iwate-u.ac.jp

Digital Object Identifier (DOI): see top of this page.

from three-dimensional (3D) models involves several interdis-
ciplinary fields such as robotics, computer graphics, human-
computer interaction and art.

Fig. 1: Our framework can draw visually pleasing oriental
ink painting given input 3D models. Left: the robotic arm
drawing a portrait from a 3D model in ink painting style;
Middle: input 3D models “Youren” sculpture and “Stanford
Bunny”; Right: robotic drawing results.

With the rapid advancement of Non-Photorealistic Render-
ing (NPR), a variety of digital arts have been created from
images [2], [3]. However, most of these studies focus on
generating digital works or imitate master’s painting styles
from two-dimensional (2D) data. Nowadays, it is convenient
to reconstruct 3D models of real-world objects through depth
sensors or multi-view photos [4]. In comparison with 2D
sketches and images, 3D models can better deliver the geomet-
rical structure of objects. Thus, Grabli et al. [5] and Liu et al.
[6] have studied the creation of stylized line drawings from
3D models. While these methods work well for generating
digital paintings, it is a challenging task to realize physical
paintings using a robotic arm, since the motion control of
the robot and the interaction process among the brush, ink,
and a paper are totally different from the digital rendering.
Recently, Lindemeier et al. [7], Scalera et al. [8], and Löw et
al. [9] have developed painting robots to achieve impressive
oil painting, watercolor painting and portrait drawing from 2D
images. However, the current robotic drawing methods haven’t
considered generating stylized ink paintings from 3D models.
In this work, we design an oriental ink painting framework to
physically draw stylized strokes from 3D models as shown in
Fig. 1. The main contributions of this work include:

• a practical user interface to vectorize and extract expres-
sive digital strokes from 3D models by referring to both

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2023

the simplified contours and the original models.
• an optimization and mapping method for drawing smooth

and physically consistent strokes from the digital strokes.
• a realization of two oriental ink painting styles which are

termed as Noutan and Kasure to create aesthetic effects
of shading and scratchiness on a rice paper.

• a novel framework to convert 3D models to oriental ink
paintings through interactive editing and robotic drawing.

II. RELATED WORK
The publications that are directly related to our work can

be categorized into two groups: stylized line drawing methods
from 3D models in simulation stage, and robotic drawing
methods in real execution stage.

A. Line Drawings from 3D Models

The problem of extracting and drawing expressive lines
from 3D models is equivalent to the problem of how artists
create line drawings from real objects, which is one of
the challenging task in NPR. The detailed survey of line
drawing methods from 3D models can be found in Bénard
and Hertzmann’s tutorial [10]. Saito and Takahashi [11] first
created stylized contour lines and curved hatching from 3D
models by using 2D image processing operations. Winkenbach
and Salesin [12] extended the work of [11] to generate more
realistic line drawings from 3D models by integrating 2D
and 3D rendering. Zhang et al. [13] presented a cellular
automaton model to simulate the Suibokuga-like painting of
3D trees. DeCarlo et al. [14] proposed Suggestive Contours to
improve the quality of line drawings by connecting perception
knowledge and differential geometry. Grabli et al. [5] created
vivid stylized line drawings such as Japanese big brush from
3D models based on the work of [14]. Judd et al. [15] defined
view-dependent curvature to generate Apparent Ridges that
captured more detailed features than the Suggestive Contours.
Recently, Uchida and Saito [16] introduced two fully convo-
lutional neural networks to determine the intensity of strokes
for stylized line drawings. Liu et al. [6] generated impressive
stylized strokes for line drawings based on a combination of
a differentiable geometric module and an image translation
network. Although these methods have ability to extract fea-
ture lines and generate visually pleasing digital strokes from
3D models, they are unsuitable for creating physical stylized
strokes for robotic drawing because the extracted lines are
likely to be redundant or oversimplified, and the styles of
digital strokes which are usually implemented by texture map-
ping are difficult to be realized in physical drawing. Inspired
by the work of interactive inking for cleaning rough sketches
[17], our work does not pursue fully automatic realization of
line drawings but focuses on extracting a few non-overlapping
expressive lines with a combination of existing automatic
contour extraction method and human-computer interaction
process.

B. Robotic Drawing

The earliest work of robotic drawing could date back to
Harold Cohen’s exhibitions at the Computer Museum in 1995

[18]. Cohen developed a robotic drawing system “AARON”
that could color its own paintings using a variety of brushes.
Thanks to advances of sensor and AI technologies, the diver-
sity, perception and collaboration skills of robots improved
significantly. Calinon et al. [19] designed a 4 Degrees of
Freedom (DOFs) robotic arm to draw a portrait detected
from a webcam using traditional image processing and in-
verse kinematics methods. Löw et al. [9] designed a robotic
system “drozBot” to draw artistic portraits from images based
on a novel ergodic control algorithm. However, the above-
mentioned methods can only create monochrome paintings.
Recently, Lindemeier et al. [7] proposed a painting robot to
realize colored oil painting styles from 2D images. Luo and
Liu [20] realized an interesting colored Cartoon style portrait
painting using NPR techniques. Scalera et al. Karimov et al.
[21] developed a data-driven model for accurately color mixing
and reproduced famous artworks based on a robotic arm. More
recently, the deep learning methods have been developed to
solve more complicated robotic drawing problems. Zhang et
al. [22] trained a network to identify the type of individ-
ual strokes for intelligent calligraphy beautification. Gao et
al. [23] developed a robotic system for efficiently drawing
portraits from images based on a combination network of
Neural Style Transfer and Generative Adversarial Network.
Bidgoli et al. [24] used deep learning method to learn stylized
brushstroke from human artists and reproduce them through
robotic painting. Furthermore, the surface of robotic drawing
has been extended from 2D to 3D. Song et al. [25] presented an
impedance control method that can draw user’s 2D drawing on
a 3D surface without vision support, and extended the drawing
on a large and nonplanar surface with a mobile platform [26].
In contrast, Liu et al. [27] developed a robotic system to draw
2D strokes on 3D surface based on scanned point clouds and
a robust motion planning algorithm. While all these robotic
drawing methods have varying focuses such as artistic portrait
drawing [9], [19], [20], [23] or stylized colored painting from
2D images [7], [8], [20], [28] or realistic calligraphy drawing
[22] or robust drawing on 3D surfaces [25]–[27], they haven’t
considered creating stylized ink paintings from 3D models
which requires understanding the abstraction technique from
3D models and the motion control of a robotic arm and a
brush to generate the styles of oriental ink painting such as
Noutan and Kasure.

III. OVERVIEW

In this work, we propose a semi-automatic robotic draw-
ing framework to convert 3D models to physical stylized
ink paintings. Fig. 2 illustrates the workflow of our robotic
drawing framework. We start off with a shaded 3D model
with different viewpoints. To depict shapes by few featured
strokes for ink painting, we extract geometrical contours from
the 3D model and then employ a neural network to simplify
the contours. Next, the simplified contour image is converted
to a vector image by taking account of local and global
curvatures, and a user interface is designed to allow users
to pick, merge and insert expressive polylines in accordance
with personal artistic perception for detailed enrichment. After

JIN et al.: A SEMI-AUTOMATIC ORIENTAL INK PAINTING FRAMEWORK FOR ROBOTIC DRAWING FROM 3D MODELS 3

user interaction, a digital ink painting with selected strokes is
automatically generated in real-time. In order to control and
draw physical strokes that are consistent to the digital strokes
by using a robotic arm, we optimize the stoke trajectory and
map the stroke properties from simulation space to physical
space. Finally, two typical oriental ink painting styles which
are termed as Noutan and Kasure are realized to add aesthetic
effects of shading and scratchiness to the physical strokes.

Fig. 2: Overview of our robotic drawing framework.

IV. FEATURE LINE EXTRACTION AND
SIMPLIFICATION

In contrast to western paintings which usually concentrate
on the realism of visual objects since the Renaissance [29],
most oriental ink paintings emphasize the inner spiritual
essence instead of exact imitation of objects. A typical tech-
nique is drawing few well-organized stylized strokes on a
rice paper to leave white space for stimulating imagination.
In order to depict shapes by few feature strokes, we extract
geometry-based contours from 3D models and then utilize a
neural network to simplify the contour lines for ink painting.

Fig. 3: (a) A rendered “Lucy” model from a given viewpoint
and the corresponding (b) OCs, (c) OCs+SCs, (d)
OCs+SCs+ARs, and (e) simplified contours.

A. Feature Line Extraction from 3D Models

Inspired by the investigation that digital line drawings can
depict 3D model that even match the artist’s drawings [30], we
select three typical geometry-based digital contours, namely
occluding contours (OCs), suggestive contours (SCs) [14], and
apparent ridges (ARs) [15], as the basis for the creation of ink
paintings from 3D models. Given a camera viewpoint and a
3D model, the combination of these contours produces a raster
contour image as shown in Fig. 3 (a-d), where OCs conveys

the rough shape of the object, SCs and ARs add considerable
amount of details to the 3D model.

B. Neural Simplification Network

3D models
Number of

models

1st view 2nd view

Rough contours Simplified contours Rough contours Simplified contours

Humans 20

Flowers 20

Animals 20

Furniture 20

Fig. 4: Dataset from two different views of 3D models for
neural simplification network.

Although the extracted contours are a reasonable description
of 3D shape, it creates large amount of dense and detailed lines
that are inapplicable for oriental ink paintings which focus on
sparse stylized strokes. Motivated by the CNN-based neural
network for sketch simplification [31], we employ the similar
network with 3 down-convolution layers, 17 flat-convolution
layers and 3 up-convolution layers to simplify the contour
image. The loss function is defined as the l2-norm of the
difference between the output image and the target image.
However, the dataset of the previous network is for cleaning
rough pencil sketches. Therefore, we construct our contour
simplification dataset through manual annotation.

The dataset consists of two parts, one part is rough contours
automatically extracted from 3D models and the other part
is the corresponding feature lines selected by users. The
3D models in the dataset are constructed from 4 categories
including humans, flowers, animals and furniture, and each
category has 20 3D model as shown in Fig. 4. To make
the training robust, we augmented the dataset by applying
image blurring, flipping and adding noise. Then, we measured
precision by defining the contour pixels as “True” and the rest
pixels as “False”. The dataset was divided into training set,
validation set and test set with a ratio of 8 : 1 : 1. After 600
epochs of iterative training with batch size of 8, the precision
of the network converged to 0.982 and 0.853 on the training set
and the validation set when considering only one viewpoint,
and the corresponding accuracy converged to 0.986 and 0.857
when considering two viewpoints as shown in Fig. 5, which
indicated that increasing the number of viewpoints did not
change the network accuracy much.

V. VECTORIZATION AND INTERACTIVE EDITING

Thus far the simplified contours are represented by a raster
image, it is a routine to convert the raster image to a vec-
tor image for ink painting. However, the vectorized image
may possibly generate small disconnected or noisy contours.
Moreover, the contours might be over-simplified that some

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2023

Fig. 5: Training and validation of neural simplification
network.

expressive features are ignored. Therefore, we developed a
user interface to interactively edit the simplified contours.

A. Vectorization

To generate smooth individual curves without junctions for
robotic drawing, locating proper corners is critical because
corners have significant variations in curvature. Thus, we use
a robust corner detector to remove junctions or intersection
points at which curves meet based on local and global curva-
tures [32]. The local curvature of the ith contour pixel (xi, yi)
in a raster image is denoted by κi. The pixels with the maxima
of absolute curvature |κi| are selected as corner candidates.
However, round corners which are important for forming
smooth curves might be incorrectly marked as candidates.
Therefore, a global curvature threshold κi is defined to remove
round corners by considering the mean curvature within a
region of support [Lleft, Lright]:

κi =
µ

Lleft + Lright + 1

i+Lright∑
j=i−Lleft

|κj | (1)

where Lleft and Lright are the nearest curvature minima on
both sides of pixel i, and µ is the splitting ratio to control the
number of vectorized curves. If |κi| of a pixel is less than κi,
it is classified as round corner and then should be removed
from the corner candidates. Finally, the rest corner pixels
are utilized as endpoints Xk to form individual polylines,
and each polyline is represented by a series of line segments
{(X1, X2), (X2, X3), ..., (Xk, Xk+1), ..., (Xn−1, Xn)}.

B. Interactive Editing

To generate appropriate stylized strokes for oriental ink
painting which emphasizes sparse and expressive contours, we
developed a user interface (UI) as shown in Fig. 6 to allow
users to flexibly edit the simplified contours. The left view
of the UI is designed for human-computer interaction, and
the right view simultaneously shows the completed digital ink
painting. The UI consists of several tools including “Split”,
“Pick”, “Delete”, “Merge” and “Insert”.

Split. A “Splitting ratio” slider is used to adjust the splitting
ratio µ for vectorization. Small µ will break up long curves
and generate short polylines. In contrast, large µ will retain
long curves. The default value of µ is set as 160.

(a) Interactive editing of vectorized contours.

(b) Refined result by referring to the 3D model.

Fig. 6: Human-computer interaction for extracting expressive
strokes. (a) From the simplified contours, the “Split”, “Pick”
and “Delete” tools can be used to select outside contours
(colored polylines except blue ones) and inside contours
(blue polylines). (b) By referring to the original 3D model,
we can refine the result of (a) by inserting, merging and
extending polylines.

Pick. The “Pick” tool allows users to interactively select
expressive polylines. By default, the vectorized outside OCs
are automatically selected as the target as shown in Fig. 6(a).
However, the inside polylines require manual selection because
not all the simplified SCs and ARs are appropriate for stylized
painting. Once a polyline is selected, the users can extend the
polyline by inserting new points.

Delete. The “Delete” tool is used to remove incorrectly
picked polylines.

Merge. For over-simplified or over-segmented curves, the
“Merge” tool can be used to re-connect broken polylines and
form long curves.

Insert. The “Insert” tool is used to add new polylines. The
missing features may happen during the feature extraction step
or after neural simplification. To ensure the expressive features
are correctly added or selected, our interface refers not only
to the vectorized contours but also to the original model as
shown in Fig. 6(b).

Moreover, we design two more sliders to control the maxima
and minima width (thickness) of a stroke. While the interaction
process is not fully automatic, users can obtain expressive
strokes according to their aesthetic understandings by taking

JIN et al.: A SEMI-AUTOMATIC ORIENTAL INK PAINTING FRAMEWORK FOR ROBOTIC DRAWING FROM 3D MODELS 5

Fig. 7: Stroke optimization for robotic drawing. (a) The B-spline curve generated without optimization; The fitting curve
generated by our method in (b) 1 iteration, (c) 5 iterations, and (d) 15 iterations; (e) The simulated stroke; (f) The robotic
drawing stroke with λ = 1/2 and Tdip = 3.0sec. (Blue dots are control points, and black dots are sampling points.)

advantage of the editing tools.

VI. STROKE OPTIMIZATION AND MAPPING

Unlike digital ink paintings, it is difficult to precisely control
and draw physical strokes by using a robotic arm with a
soft brush. Thus, we optimize the stroke trajectory and map
the stroke positions and thicknesses from simulation space to
physical space instead of directly input them to robotic arm.

A. Stroke Optimization

The extracted polylines may not be smooth or unevenly
sampled, which are not suitable for direct use in robotic
drawing. A B-spline curve can generate evenly distributed
smooth curve with several control points and avoid the Runge
phenomenon. However, the choosing of control points is
crucial because the generated curve does not necessarily pass
through the sample points as shown in Fig. 7(a). Considering
a cubic B-spline curve C(t) =

∑m
i=1 Ni,3(t)Pi, where Pi is

control point and Ni,3(t) is the basis B-spline of degree 3. To
compute a smooth curve for approximating endpoints Xk of
extracted lines, we employ a nonlinear optimization method
[33] to fit Xk using the following object function:

f =
1

2

n∑
k=1

D2
sdm(C(t)−Xk) + αf1 + βf2 (2)

where Dsdm(C(t) − Xk) is the squared distance error term
to measure the distance between the point Xk and the curve
C(t), f1 =

∫
||C ′(t)||2dt and f2 =

∫
||C ′′(t)||2dt are

smoothness terms, and α, β ≥ 0 are constant coefficients. The
minimization problem of the object function f can be solved
by the Quasi-Newton iteration method to generate an updated
fitting curve as shown in Fig. 7(b-d). After 15 iterations, the
updated curve almost pass through all the sample points as
seen in Fig. 7(d).

B. Thickness Setting

The thickness of a stroke ti {i = 1, 2, ..., n} at each of
sampling vertices Ci(xi, yi) on the optimized B-spline curve
is defined by an exponential interpolation of a minimum
thickness tmin and a maximum thickness tmax in the middle
of the curve:

ti =

{
[1− (2in)

γ]tmin + (2in)
γtmax i < n

2

[1− (2(n−i)
n)γ]tmin + (2(n−i)

n)γtmax i ≥ n
2

(3)

where γ = 0.6 is an exponent to control the change rate of
the stroke thickness [5]. Fig. 7(e) shows the simulated drawing
stroke with thickness controlled by Eq. (3) when the default
values of tmax and tmin were set as 25 and 4 respectively.

TABLE I: Stroke mapping to physical space

hi − htip 2 4 6 8 10 12 14 16 18
ti(mm) 3 4 5 6.5 10.5 12 13 14 14.5

Robotic
drawing
strokes

C. Stroke Mapping

In order to physically draw strokes that are consistent to
the simulated strokes as shown in Fig. 7(e), firstly, we carried
out an experiment to derive the relationship between stroke
thickness ti and the descent of brush hi which is controlled
by a robotic arm. Let htip be the height at which the brush
tip just reaches the paper without distortion. The descent step
of the brush was set as 2mm, and (hi − htip) was updated
from 2mm to 18mm. The footprint of the brush is like a
droplet and the increasing descent results in more severe brush
bending, which in turn leads to wider stroke as shown in
Tab. I. The thickness of each stroke ti was measured at the
widest part of the stroke. Then, a standard least-squares fitting
approach was applied to estimate the relationship between ti
and hi. Finally, we obtained hi = wti + b + htip, where
w = 1.178, b = −0.801, and the coefficient of determi-
nation R2 is 0.957, which indicates that the linear fitting
is appropriate for thickness prediction. Correspondingly, the
stroke position (x′

i, y
′
i) for robotic drawing can be mapped by

(x′
i = w(yi − yc) + x′

o, y
′
i = w(xi − xc) + y′o), where (xc, yc)

is the centroid of sampling vertices in simulation space, and
(x′

o, y
′
o) is the center of robot Cartesian space. Fig. 7(f) shows

the robotic drawing stroke which is close to the simulated one
after using stroke mapping.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2023

VII. ROBOTIC DRAWING OF STYLIZED INK
PAINTING

The oriental ink paintings utilize simple brush, black ink
and water to generate strokes with varying painting styles,
then to depict complex scenery such as bamboos, fish, shrimps
and mountains. However, it is extremely difficult for common
people to master the painting styles. Therefore, we employ a
robotic arm to realize typical ink painting styles, in the vision
that even an amateur can draw a fair ink painting by taking
advantage of the robotic arm.

Fig. 8: Two types of painting styles in the real oriental ink
paintings.(a) Kasure (scratchiness) and Noutan (light or thick
ink); (b) Noutan (gradient shading).

A. Oriental Ink Painting Styles

In traditional oriental ink paintings, the patterns of light
and darkness can be applied to strokes by using two typical
ink painting styles, which are termed as Noutan (shade) and
Kasure (scratchiness) [13], [36] as shown in Fig. 2 and Fig.
8. Noutan uses water to lighten the ink and creates shade of
gray color of a stroke. Fig. 8 (a, b) shows the light gray, dark
gray and gradient shading strokes drawn by different Noutan
shading styles. Kasure is the scratchy break-up of a stroke
trajectory caused by insufficient and uneven supply of ink
along the brush as shown in Fig. 8(a). In our work, we explore
an automatic approach to achieve the two painting styles using
robotic arm.

Fig. 9: Workspace of our robotic drawing framework.

B. Robotic Drawing of Ink Painting Styles

To create the shading effect, we assume that Noutan is
a diffusion process of a brush with varying color of ink.
Therefore, two ink stones, which are filled with light ink and
thick ink, are prepared for mixing the two kinds of inks using
the brush as shown in Fig. 9.

In our experiment, we observed that fully moistening the
brush in the thin ink and scraping the ink at the edge of
ink stone in advance is helpful for forming natural Noutan
style. Thus, we defined a series of actions for automatically
rendering the Noutan style:

Anoutan = ∪4
n=1{Atran(Plight), Adip,

Atran(Plight + ((−1)nr cos(
π

4
), (−1)⌊n/2⌋r sin(

π

4
))),

Ascrape} ∪ {Atran(Pthick), Adip}

(4)

where Atran, Adip, and Ascrape represent the actions of
translation, dipping and scraping of the brush; Plight, Pthick

and r are the central positions and radii of the ink stones. Eq.
(4) describes that the action Noutan consists of (1) a cross-
like translation, dipping and scraping in 4 directions for fully
moistening and adjusting the brush in the light ink, and (2)
a translation and dipping for mixing in the thick ink. Next,
the dipping time Tdip and dipping height Ldip of the brush in
the thick ink can be applied to control the shading degree of
Noutan:

Dnoutan =
Ldip(1− e−c1Tdip)

Lbrush

(5)

where Lbrush is the length of a brush, and c1 is a constant
coefficient. Let λ = Ldip/Lbrush which denotes the dipped
ratio of a brush. Then, a small λ and a small Tdip will create
bright shading effect as shown in Fig. 10(a) because of shallow
mixing in the thick ink, and a large λ and a large Tdip will
generate dark shading effect as shown in Fig. 10(b) because
of sufficient mixing in the thick ink.

Fig. 10: Robotic drawing results of (a, b) Noutan and (c)
Kasure styles. (a) λ = 1/4 and Tdip = 0.5sec; (b) λ = 1/3
and Tdip = 2.5sec; (c) λ = 1/3 and Tdip = 1.0sec.

Kasure mainly depends on the property of brush hairs, the
quantity of ink absorbed by the brush and the area of drawing
strokes. It is difficult to dynamically control the property of
each brush hair such as the length, stiffness and the ability
of absorbing fluid. However, it is possible to control the
amount of ink on the brush and the area of strokes. Therefore,
we assume that the degree of scratchiness is proportional to
the stroke area which consists of a series of trapezoids and

JIN et al.: A SEMI-AUTOMATIC ORIENTAL INK PAINTING FRAMEWORK FOR ROBOTIC DRAWING FROM 3D MODELS 7

inversely proportional to the absorbed quantity of ink which
is related to the dipping time Tdip and the dipped ratio λ:

Dkasure =
c2

∑n−1
i=1 [(ti + ti+1)||Ci − Ci+1||]

2λ(1− e−c3Tdip)
(6)

where c2 and c3 are constant coefficients. In our experiment,
the brush remained dry before being dipped into an ink stone.
Fig. 10(c) shows the distinguishable effect of scratchiness
when setting a small λ and a small Tdip. In contrast, the Kasure
effect only happened at the very end of the stroke when setting
a large λ and a large Tdip as shown in Fig. 7(f).

C. Trajectory Planning

In order to draw stylized strokes using robotic arms, we first
mapped the sampling positions and thicknesses (Ci, ti)(i =
1, 2, ..., n) of an optimized stroke in simulation space to
(C ′

i, hi) in robot Cartesian space as introduced in Sec. VI.
Then, we set the painting styles, dipping time Tdip and dipped
ratio λ of a brush for stylized drawing. Next, the brush was
lifted to an initial safe plane with a height h0 above a drawing
plane waiting for real executions as shown in Fig. 9. After
that, a series of actions such as Atran, Adip and Ascrape

were combined to form various painting styles. Finally, the
stroke trajectory (C ′

i, hi) integrated with the way-points of
these actions were automatically converted to joints’ rotations
from Cartesian space to joint space by solving an inverse
kinematics problem [34]. One of an important design of
trajectory planning is to choose a joint-space or task-space
trajectory. In our framework, we used task-space trajectory
since it generates physical strokes more faithful to the simu-
lated ones. Furthermore, the speed of robotic drawing for each
stroke was constrained by a typical trapezoidal velocity model
which ensures piecewise trajectories of constant acceleration,
zero acceleration, and constant deceleration.

VIII. RESULTS AND DISCUSSION

Our robotic drawing framework was implemented in a PC
configured with a 4.0GHz CPU, 16GB RAM, and Windows
10 OS. The user interface, optimization and control algorithms
were developed by Python 3.6 and C++. In order to satisfy
the requirements of painting for common people, a consumer-
grade robotic arm “Dobot Magician” (less than $2000) with
0.2mm positioning repeatability is used to draw different
painting styles. All motions of the robotic arm are realized
in 4 DOFs, and the drawing speed of the robotic arm is set
from 50mm/sec to 120mm/sec for stable painting.

1) Evaluation of Simplification Network: Fig. 11 shows two
different simplified contours generated from the input rough
contours of a 3D model. We can observe that our updated
model with augmented dataset generated cleaner and longer
contours than the results of the pre-trained model of Simo-
Serra et al. [31].

2) Evaluation of Editing Tools: If we directly use all the
simplified contours to generate strokes without interactive
editing, it will generate many redundant strokes overlapping
with each other or some expressive strokes might be ignored
as shown in Fig. 12(c). Therefore, we designed the interactive

Fig. 11: Simplified contours generated from pre-trained
model and updated model with augmented datasets. (a) The
input rough contours of a 3D model; (b) Simplification result
based on the pre-trained model of [31]; (c) Simplification
result based on the updated model trained by our dataset.

Fig. 12: Automatically generated strokes vs. interactive
editing strokes from simplified contours. (a) The input rough
contours of a 3D model; (b) Simplified contours; (c)
Automatically generated strokes from (b); (d) Interactive
editing strokes from (b).

editing tools to choose and modify expressive strokes by
referring to both the simplified contours and the original 3D
models. Fig. 12(d) shows that our editing tools can generate
clean and expressive strokes.

Fig. 13: Comparison of stroke drawing results with various
descent of brush height hi.

3) Evaluation of Stroke Optimization: To evaluate the effec-
tiveness of stroke optimization algorithm, we have conducted
an experiment to verify that the physically drawing stroke
can keep the shape of a simulated curve when the brush is
deformed with various descent height hi as shown in Fig. 13.
The first row of Fig. 13 show the robotic drawing results of
strokes before B-spline fitting and optimization. The second
row of Fig. 13 shows the robotic drawing results of strokes
after B-spline fitting without optimization, and the third row

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2023

of Fig. 13 shows the robotic drawing results of strokes after
B-spline fitting with optimization.

Fig. 14: The typical 6 turning points of a target curve.

To quantitatively evaluate the stroke optimization method,
we utilized the angle of contingence θ (or the slope change be-
tween contiguous straight-line segments at a point) presented
by [35] to represent the discrete curvature at the 6 typical
turning points of the simulated curve as shown in Fig. 14.
The original angles of contingence of the turning points in
the simulated curve are 135◦, 93◦, 130◦, 81◦, 148◦ and 150◦.
The angles of contingence corresponding to the three kinds of
physically drawing strokes in Fig. 13 are shown in Tab. II, III
and IV. Fig. 15(a-c) show the corresponding changing trends
of θ from Tab. II, III and IV.

TABLE II: Statistics of θ before fitting and optimization

descent height 1 2 3 4 5 6 average
error

47.5mm 140 91 140 90 150 170 7.33
46.5mm 145 95 138 92 151 171 9.17
45.5mm 149 96 138 93 158 169 11.00
44.5mm 158 100 140 92 149 175 12.83
43.5mm 164 102 140 93 150 165 12.83

TABLE III: Statistics of θ after fitting without optimization

descent height 1 2 3 4 5 6 average
error

47.5mm 160 115 140 96.5 147 164 14.25
46.5mm 163 122 142 97 145 165 16.17
45.5mm 165 123 142 98 148 169 16.83
44.5mm 166 125 144 100 147 175 18.00
43.5mm 165 127 144 99 152 165 18.67

From Tab. II and III, we can observe that the total average
error of θ after fitting is 16.784, that is much larger than that
of angle of contingence (10.632) before fitting, though the

TABLE IV: Statistics of θ after fitting with optimization

descent height 1 2 3 4 5 6 average
error

47.5mm 140 97 135 95 150 155 5.83
46.5mm 142.5 100 135 93 148 158 6.58
45.5mm 147 105 136 92 148 158 8.16
44.5mm 150 113 136 94 150 160 11.00
43.5mm 151 121 138 95.5 147 160 12.58

fitted curve generated more smooth strokes as shown in Fig.
13. From Tab. II and IV, we can conclude that the optimized
B-spline curve not only create the minimal total average
error 8.83, but also generate smooth strokes. Therefore, the
proposed B-spline fitting and optimization method has the
merits of retaining the shape of the simulated stroke as well
as generating physically smooth strokes.

Fig. 16: Robotic drawing process of “Stanford Bunny” (a)
before and (b) after applying stroke optimization.

Fig. 17: Robotic drawing results with two painting styles
including (a) Noutan (gradient shading), (b) Kasure, (c)
Noutan (thick ink), and (d) Noutan (light ink).

Furthermore, we have compared the drawing results of the
“Stanford Bunny” before and after using the optimization
method. It can be observed that the optimized strokes are

Fig. 15: Changes of the θ at the 6 turning points (a) before fitting and optimization, (b) after fitting without optimization and
(c) after fitting with optimization.

JIN et al.: A SEMI-AUTOMATIC ORIENTAL INK PAINTING FRAMEWORK FOR ROBOTIC DRAWING FROM 3D MODELS 9

Fig. 18: Results of Noutan effect with different combinations of λ and Tdip.

more smooth and natural than the original strokes before
optimization as shown in the colored rectangles of Fig. 16.

4) Evaluation of Painting Styles: To test the oriental ink
painting styles, we have conducted an experiment to show the
effect of Noutan and Kasure on “Stanford Bunny” and “The
Utah Teapot” from different viewpoints. Fig. 17(a) shows the
gradient shading effect of Noutan style and Fig. 17(b) shows
the scratchy effect of Kasure style. The extreme case of Noutan
style is using thick ink or light ink only to convey strong or
delicate impression as shown in Fig. 17(c, d).

To quantitatively measure the intensity of the two ink
painting styles, we set 12 different combinations of dipped
ratio λ and dipping time Tdip, and then draw the painting
with Noutan and Kasure styles on rice paper, and 2 experts
were invited to score each painting.

Fig. 18 shows the results of Noutan experiment. To observe
the different effect of parameters, we changed one parameter
while keeping the remaining parameter constant. The first row
of Fig. 18 shows the score of Noutan effect when λ is constant
and Tdip is changing, and the second row of Fig. 18 shows the
score of Noutan effect when Tdip is constant and λ is changing.

As the dipping time is gradually increased from 0.5s to 3.0s,
the Noutan intensity decreases and converges to 0.6. On the
other hand, when the dipped ratio is increased from 2/12 to
7/12, the Noutan intensity gradually decreases from 0.8 to
0.2.

Fig. 19 shows the results of Kasure experiment. The rela-
tionship of the dipping time and the dipped ratio are similar
to the Noutan experiment. Moreover, we can observe that the
dipped ratio has a greater impact on style intensity than the
dipping time.

Furthermore, we have designed an experiment to demon-
strate the effect of robot’s velocity on Kasure style of a
stroke and the drawing results are shown in Figure 20. The
experiment was conducted with the dipped ratio λ = 1/3 and
the dipping time Tdip = 2.0s. The drawing velocity v was set
from 50mm/s to 110mm/s with an increasing step 15mm/s.
From the results, we can observe that the increasing of robot’s
velocity will result in more intensive Kasure effect at the
initial stage from 50mm/s to 95mm/s. However, the Kasure
effect will converge as the speed increases at the closing stage
from 95mm/s to 110mm/s. The results showed that robot’s

Fig. 19: Results of Kasure effect with different combinations of λ and Tdip.

10 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2023

Fig. 20: Drawing results of Kasure style of a stroke with different robot’s velocity.

Fig. 21: The physical ink painting generation process of “Lucy”. (a, f) Left and right views; (b, g) Initial geometrical
contours; (c, h) Simplified contours; (d, i) Simulated ink paintings after vectorization and user editing; (e, j) Robotic drawing
results.

velocity does impact the final painting styles.
However, there are many factors possibly impact the paint-

ing styles such as the drawing speed, the property of brush
hairs, the quantity of ink absorbed by the brush and the area
of drawing strokes. In our work, it is difficult to consider all
these factors for controlling a specific painting style. Inspired
by Strassmann’s pioneer work of non-photorealistic rendering
“Hairy Brushes”, we fixed the drawing velocity and mainly
consider the factor ink quantity because the ink supply on
each bristle of a brush is assumed to be a reservoir of a
finite quantity of fluid and the quantity is decreased as the
brush moves through a stroke [36]. Therefore, our framework
chooses to generate ink style by controlling ink quantity
instead of robot’s velocity.

5) Applications: We also examined the ability of our frame-
work to draw complicated stylized portrait from the standard
3D model “Lucy” as shown in Fig. 21. The results showed that

the physically drawing strokes retained the characteristics of
reference model after feature extraction, simplification, digital
simulation and optimization. Note that the Kasure and Noutan
styles have been applied to the hair and shoulder of “Lucy”
respectively.

To evaluate the scalability of our robotic drawing framework
for arbitrary user-defined model, we collected approximately
40 photos around a sculpture named “Youren” by a normal
smartphone, and then reconstructed its point cloud and surface
by using SfM (Structure from Motion) and screened Poisson
reconstruction algorithms. Fig. 22 shows that a small number
of stylized strokes can depict the facial expression of a
character, which indicates that our framework has the potential
for drawing vivid portraits from varying viewpoints once a 3D
model is given.

6) Performance: We calculated the time of line extraction,
stroke optimization and robotic drawing of the tested 4 3D

JIN et al.: A SEMI-AUTOMATIC ORIENTAL INK PAINTING FRAMEWORK FOR ROBOTIC DRAWING FROM 3D MODELS 11

Fig. 22: Robotic drawing results of a user-defined 3D model “Youren”. (a, f) Two different views; (b, g) Initial contours; (c,
h) Simplified contours; (d, i) Simulated results; (e, j) Robotic drawing results.

models, each of which has 2 viewpoints, and the quantitative
results of our robotic drawing framework is shown in Tab. V.

TABLE V: Time statistics of the robotic drawing framework.

model viewpoint number of
strokes

line
extraction

stroke
optim.

robotic
drawing

teapot V1 16 86s 3.9s 322s
V2 14 78s 3.8s 316s

bunny V1 14 84s 3.8s 303s
V2 12 75s 3.6s 356s

Lucy V1 44 315s 14.7s 723s
V2 29 291s 8.9s 839s

Youren V1 51 512s 16.3s 450s
V2 76 762s 24.1s 541s

Although strokes have various length and thickness, the
average execution time of line extraction, stroke optimization
and robotic drawing of each stroke is 8.61s, 0.31s and 15.04s.
The results showed that the robotic drawing of stroke is the
most time-consuming stage because the physical drawing of
a stroke with a brush is inherently slow, and the expressive
line extraction is the second time-consuming stage because it
requires user interaction, and the stroke optimization is the
most efficient stage because it is fully automatic.

IX. CONCLUSION

We presented a new robotic drawing framework for convert-
ing 3D models to oriental ink paintings. With a combination
of automatic contour extraction methods and human-computer
interaction process, the framework is flexible for users to
create personalized expressive digital strokes in simulation
stage. Furthermore, through the proposed stroke optimization,
mapping and motion planning methods, the framework is able
to draw stylized ink paintings in real execution stage, which
is the key contribution of our work.

However, the current framework is not fully automatic be-
cause the selection of expressive contours depends on different
users and the manually annotated data is not sufficient for
training a comprehensive network for arbitrary 3D models. In
the future, we are going to collect and train a contour se-
lection network from painting experts, and ultimately achieve
an end-to-end framework for a more streamlined solution.
Secondly, the current drawing focuses on contours instead
of shadows and textures. We intend to learn the diffusion
effect of ink paintings by considering advanced NPR skills
such as hatching. Another restriction is that the impact of
drawing speed is not considered in robotic drawing. We will
improve the performance of painting styles by fine-grained
velocity-intensity model. Furthermore, it is noticed that the
DynamicFusion [37] and SplitFusion [38] are very promising
3D vision works for generating 3D models in real-time. We
plan to use these methods to generate 3D models in real-time
and draw the corresponding artworks with ink painting style
in our future work.

For a better understanding of the results of interac-
tive editing, optimization and robotic drawing, please re-
fer to the supplementary video from the submitted at-
tachment or the link (https://cie.nwsuaf.edu.cn/docs/2023-08/
630b0573861443c3ae1366de3cef1263.mp4).

ACKNOWLEDGEMENT

We would like to gratefully thank the associate editor and
the reviewers for their constructive comments and suggestions.
This work was supported in part by the Natural Science Basis
Research (NSBR) Plan of Shaanxi under Grant 2022JM-363,
the Key Project of Shaanxi Provision-City Linkage under
Grant 2022GD-TSLD-53 and the National Natural Science
Foundation of China under Grant 61303124.

12 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2023

REFERENCES

[1] H. Chen. (2020) CGI ink-painting animation in contemporary
China, 1989-2019. [Online]. Available: https://acas.world/2020/07/24/
cgi-ink-painting-animation-in-contemporary-china-1989-2019/

[2] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua, “Stylebank: An explicit
representation for neural image style transfer,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2017, pp. 1897–1906.

[3] F. Tang, W. Dong, Y. Meng, X. Mei, F. Huang, X. Zhang, and
O. Deussen, “Animated construction of Chinese brush paintings,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 12,
pp. 3019–3031, 2017.

[4] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud,
J. A. Levine, A. Sharf, and C. T. Silva, “A survey of surface reconstruc-
tion from point clouds,” Computer Graphics Forum, vol. 36, no. 1, pp.
301–329, 2017.

[5] S. Grabli, E. Turquin, F. Durand, and F. X. Sillion, “Programmable
rendering of line drawing from 3D scenes,” ACM Transactions on
Graphics, vol. 29, no. 2, pp. 1–20, 2010.

[6] D. Liu, M. Fisher, A. Hertzmann, and E. Kalogerakis, “Neural strokes:
Stylized line drawing of 3D shapess,” in IEEE/CVF International
Conference on Computer Vision, 2021, pp. 14 184–14 193.

[7] T. Lindemeier, J. Metzner, L. Pollak, and O. Deussen, “Hardware-based
non-photorealistic rendering using a painting robot,” Computer Graphics
Forum, vol. 34, no. 2, pp. 311–323, 2015.

[8] L. Scalera, S. Seriani, A. Gasparetto, and P. Gallina, “Watercolour
robotic painting: a novel automatic system for artistic rendering,”
Journal of Intelligent & Robotic Systems, vol. 95, pp. 871–886, 2019.

[9] T. Löw, J. Maceiras, and S. Calinon, “drozbot: Using ergodic control to
draw portraits,” IEEE Robotics and Automation Letters, vol. 7, no. 4,
pp. 11 728–11 734, 2022.

[10] P. Bénard and A. Hertzmann, “Line drawings from 3D models: A
tutorial,” Foundations and Trends in Computer Graphics and Vision,
vol. 11, no. 1–2, pp. 1–159, 2019.

[11] T. Saito and T. Takahashi, “Comprehensible rendering of 3D shapes,”
in ACM SIGGRAPH 1990, 1990, pp. 197–206.

[12] G. Winkenbach and D. H. Salesin, “Computer-generated pen-and-ink
illustration,” in ACM SIGGRAPH 1994, 1994, pp. 91–100.

[13] Q. Zhang, Y. Sato, J. Takahashi, K. Muraoka, and N. Chiba, “Simple
cellular automaton-based simulation of ink behaviour and its application
to Suibokuga-like 3D rendering of trees,” Journal of Visualization and
Computer Animation, vol. 10, no. 1, pp. 27–37, 1999.

[14] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella, “Sug-
gestive contours for conveying shape,” ACM Transactions on Graphics,
vol. 22, no. 3, pp. 848–855, 2003.

[15] T. Judd, F. Durand, and E. Adelson, “Apparent ridges for line drawing,”
in ACM SIGGRAPH 2007, 2007, pp. 19–es.

[16] M. Uchida and S. Saito, “Stylized line-drawing of 3D models using
CNN with line property encoding,” Computers & Graphics, vol. 91, pp.
252–264, 2020.

[17] E. Simo-Serra, S. Iizuka, and H. Ishikawa, “Real-time data-driven in-
teractive rough sketch inking,” ACM Transactions on Graphics, vol. 37,
no. 4, 2018.

[18] H. Cohen. (1995) The robotic artist: AARON in living color.
[Online]. Available: https://dam.org/museum/wp-content/uploads/2021/
01/Cohen1995.pdf

[19] S. Calinon, J. Epiney, and A. Billard, “A humanoid robot drawing human
portraits,” in IEEE-RAS International Conference on Humanoid Robots,
2005, pp. 161–166.

[20] R. C. Luo and Y. J. Liu, “Robot artist performs cartoon style facial
portrait painting,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2018, pp. 7683–7688.

[21] A. Karimov, E. Kopets, S. Leonov, L. Scalera, and D. Butusov, “A robot
for artistic painting in authentic colors,” Journal of Intelligent & Robotic
Systems, vol. 107, no. 3, pp. 34–54, 2023.

[22] X. Zhang, Y. Li, Z. Zhang, K. Konno, and S. Hu, “Intelligent Chinese
calligraphy beautification from handwritten characters for robotic writ-
ing,” The Visual Computer, vol. 35, no. 6–8, pp. 1193–1205, 2019.

[23] F. Gao, J. Zhu, Z. Yu, P. Li, and T. Wang, “Making robots draw a
vivid portrait in two minutes,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2020, pp. 9585–9591.

[24] A. Bidgoli, M. L. De Guevara, C. Hsiung, J. Oh, and E. Kang, “Artistic
style in robotic painting; a machine learning approach to learning
brushstroke from human artists,” in IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN), 2020, pp.
412–418.

[25] D. Song, T. Lee, and Y. J. Kim, “Artistic pen drawing on an arbitrary
surface using an impedance-controlled robot,” in IEEE International
Conference on Robotics and Automation, 2018, pp. 4085–4090.

[26] D. Song, J. Park, and Y. J. Kim, “Ssk: Robotic pen-art system for large,
nonplanar canvas,” IEEE Transactions on Robotics, vol. 39, no. 4, pp.
3106–3119, 2023.

[27] R. Liu, W. Wan, K. Koyama, and K. Harada, “Robust robotic 3D drawing
using closed-loop planning and online picked pens,” IEEE Transactions
on Robotics, vol. 38, no. 3, pp. 1773–1792, 2022.

[28] P. Schaldenbrand, J. McCann, and J. Oh, “Frida: A collaborative
robot painter with a differentiable, real2sim2real planning environment,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 11 712–11 718.

[29] Y. Bao, T. Yang, X. Lin, Y. Fang, Y. Wang, E. Pöppel, and Q. Lei,
“Aesthetic preferences for eastern and western traditional visual art:
Identity matters,” Frontiers in Psychology, vol. 7, pp. 1–8, 2016.

[30] F. Cole, K. Sanik, D. DeCarlo, A. Finkelstein, T. Funkhouser,
S. Rusinkiewicz, and M. Singh, “How well do line drawings depict
shape?” in ACM SIGGRAPH 2009, 2009.

[31] E. Simo-Serra, S. Iizuka, K. Sasaki, and H. Ishikawa, “Learning to
simplify: Fully convolutional networks for rough sketch cleanup,” ACM
Transactions on Graphics, vol. 35, no. 4, pp. 1–11, 2016.

[32] X. He and N. H. C. Yung, “Corner detector based on global and local
curvature properties,” Optical Engineering, vol. 47, no. 5, 2008.

[33] W. Wang, H. Pottmann, and Y. Liu, “Fitting B-spline curves to point
clouds by curvature-based squared distance minimization,” ACM Trans-
actions on Graphics, vol. 25, no. 2, pp. 214–238, 2006.

[34] O. Hock and J. Šedo, Forward and Inverse Kinematics Using Pseudoin-
verse and Transposition Method for Robotic Arm DOBOT. Intech, 12
2017.

[35] E. Bribiesca, “A measure of tortuosity based on chain coding,” Pattern
Recognition, vol. 46, no. 3, pp. 716–724, 2013.

[36] S. Strassmann, “Hairy brushes,” in ACM SIGGRAPH 1986, 1986, pp.
225–232.

[37] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 343–352.

[38] Y. Li, T. Zhang, Y. Nakamura, and T. Harada, “Splitfusion: Simultaneous
tracking and mapping for non-rigid scenes,” in 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2020, pp.
5128–5134.

