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Abstract. Recent research shows that estimating labels and graph struc-
tures simultaneously in Markov random Fields can be achieved via solv-
ing LP problems. The scalability is a bottleneck that prevents applying
such technique to larger problems such as image segmentation and ob-
ject detection. Here we present a fast message passing algorithm based
on the mixed-integer bilinear programming formulation of the original
problem. We apply our algorithm to both synthetic data and real-world
applications. It compares favourably with previous methods.

1 Introduction

Many computer vision applications involve predicting structured labels like se-
quence and trees. A potential function is typically defined to measure the consis-
tency between structured label candidates and observations, and maximising the
potential function over the labelling space discloses the structured label estima-
tion. An example is the semantic image segmentation (pixel labelling) task which
requires assigning each pixel or superpixel a label representing the corresponding
object category. Labels of all pixels form a sequence. A typical potential function
for this task is a sum of all unary potentials and pairwise potential potentials,
where each unary term measures the consistency between the pixel label and
the photometric information of the pixel, and each pairwise term evaluates the
consistency between the labels of neighbouring pixels [1].

Markov random fields (MRFs) provide a compact representation of the de-
pendency among structured variables. Each random variable is typically rep-
resented by a node in the MRF graph, and the dependency between a pair of
variables is encoded by an edge in the graph. A vacancy of edge between two
nodes indicates that the associated variables are independent conditioned on
observing the statuses of all rest variables. In this sense, the graph structure
of MRF is essential in modelling the structured prediction problems. Despite
maximising the potential function is NP-hard in general, approximations can be
found efficiently by carrying out message passing [2] on MRF graphs.
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To determine the structure of MRF graphs, one usually chooses to opti-
mise the information gain [3]. Alternatively, rules based on heuristics or domain
knowledge can be used. For example, in image segmentation, one usually uses
grid graphs with edges reflecting pixel adjacency; in human activity recognition
with multiple persons, one can use tree structured graphs that span shortest Eu-
clidean distances across all people. However, determining graphs heuristically or
based on domain knowledge is not principle and is prone to input variance. First
of all, if we create graphs by defining rules derived from domain knowledge,
the rules are always too problem-oriented to be generally applicable. Second,
unwanted edges can be easily introduced by using heuristics. For example, in
human activity recognition, graphs generated according to the near-far relation-
ship between people can be undesirable because two persons might be interacting
even when they are far away from each other (passing basketball for instance).
Due to these reasons, digging adaptive graphs directly from inputs is interesting.

Inferring graphs and labels directly and simultaneously from data has shown
to be favourable comparing with using fixed hand-engineered graphs in human
action recognition [4, 5]. However, the related inference problem is highly chal-
lenging. Lan et al. [4] propose an approach to the problem which alternates
between finding the best label for a fixed graph using loopy belief propagation,
and finding the best graph for a fixed set of labels via solving a LP. A round-
ing scheme is used to decode the structures from LP solutions. Recently, Wang
et al. [5] showed that the problem of finding labels and graphs jointly can be
formulated as a bilinear programming (BLP) problem, which they then relaxed
to a LP problem. A branch and bound (B&B) method was then developed to
improve the quality of the solution using the LP as bounds, which essentially
involves solving a number of LPs. Unfortunately, this B&B method is extremely
time-consuming even for small graphs, meaning that an early-stop is usually
used which results in a sub-optimal solution. To enable inferring graphs and la-
bels simultaneously on large-scale problems, we propose a message passing-style
algorithm in this paper. We formulate the inference as a mixed integer bilinear
programming problem [6]. Then we derive the partial-dual (the term is prob-
ably first used in [7]) of the mixed integer bilinear programming problem. To
solve the dual problem, we fix a majority of variables in the partial-dual and
the reduced problem can be solved analytically. This approach can be viewed
as a message passing process which extends Globerson’s MPLP algorithm [8] to
MRF inference with unknown graphs. We apply our algorithm to both synthetic
data and real computer vision tasks including semantic image segmentation and
human action recognition. Our algorithm is competitive with the state-of-the-art
on accuracy while is much faster.

The rest of the paper is organised as follows. In Section 2 we show our for-
mulation of the inference problem. Next in Section 3 we describe our message
passing algorithm. Then we compare our algorithm with other methods on syn-
thetic data in Section 4. Finally in Section 5 we show the applications of our
algorithm on semantic image segmentation and human activity recognition.
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2 Mixed Integer Bilinear Programming Formulation

Let V = {1, 2, . . . , n} be the node set; E = {(i, j)|i, j ∈ V, i < j} be the set
containing all possible edges; yi ∈ Y denote the discrete random variable corre-
sponding to node i; and y = [yi]i∈{1,2,...,n} be a collective representation of all
random variables. Introducing binary variables zij ∈ {0, 1},∀(i, j) ∈ E to repre-
sent if an edge (i, j) exist (zij = 1) or not (zij = 0), and letting z = [zij ]i,j∈V,i<j
be a collective representation of all zij variables formed by collecting all zij
variables in the order of enumerating all possible i and j indices in turn. Fol-
lowing [5], inferring graphs and labels simultaneously can be formulated as the
following:

max
y,z

∑
i∈V

θi(yi) +
∑

(i,j)∈E

θij(yi, yj)zij ,

s.t.
∑

(i,j)∈E

1(i = k or j = k)zij ≤ h,∀k ∈ V . (1)

Here θi(yi), θij(yi, yj) denote unary and pairwise potentials respectively, 1(·) is
an indicator function that gives 1 if the condition inside the brackets is true,
and gives 0 otherwise. The constraints control the sparsity of the estimated
graph by enforcing the maximum degree of the graph less than a constant h.
When {zij}(i,j)∈E is given, i.e. we known the graph structure, the above problem
recovers the traditional MRF inference problem.

Formulation. Introducing binary variables µi(yi) ∈ {0, 1} ∀i ∈ V, and bi-
nary variables µij(yi, yj) ∀(i, j) ∈ E, yi, yj . Let µ1 = [µi(yi)]i∈V,yi∈Y, µ2 =
[µij(yi, yj)]i<j,yi,yj∈Y be the collective representations of all µi(yi), µij(yi, yj)
variables respectively by collecting all µi(yi) and µij(yi, yj) variables in the or-
der of enumerating all possible i, j ∈ V, yi, yj ∈ Y in turn. Problem (1) can be
equivalently written as

max
µ1,µ2,z

∑
i∈V

∑
yi

µi(yi)θi(yi) +
∑

(i,j)∈E

∑
yi,yj

µij(yi, yj)θij(yi, yj)zij

s.t.
∑
yi

µi(yi) = 1 ∀i ∈ V,

∑
yi,yj

µij(yi, yj) = 1 ∀(i, j) ∈ E,

∑
yi

µij(yi, yj) = µj(yj) ∀(i, j) ∈ E, yj ,∑
yj

µij(yi, yj) = µi(yi) ∀(i, j) ∈ E, yi,∑
(i,j)∈E

1(i = k or j = k)zij ≤ h,∀k ∈ V, (2)



4 Zhenhua Wang and Zhiyi Zhang, Nan Geng

which can be relaxed into a mixed integer bilinear programming problem:

max
µ1,µ2,z

∑
i∈V

∑
yi

µi(yi)θi(yi) +
∑

(i,j)∈E

∑
yi,yj

µij(yi, yj)θij(yi, yj)zij

s.t. (µ1,µ2, z) ∈M, (3)

where M is a space defined as

M =


µ, z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
yi
µi(yi) = 1,∀i ∈ V,∑

yi,yj
µij(yi, yj) = 1,∀(i, j) ∈ E,∑

yi
µij(yi, yj) = µj(yj),∀(i, j) ∈ E, yj ,∑

yj
µij(yi, yj) = µi(yi),∀(i, j) ∈ E, yi,∑

(i,j)∈E 1(i = k or j = k)zij ≤ h,∀k ∈ V,

µi(yi) ∈ [0, 1],∀i ∈ V, yi,
µij(yi, yj) ∈ [0, 1],∀(i, j) ∈ E, yi, yj ,
zij ∈ {0, 1},∀(i, j) ∈ E .


(4)

Note our mixed integer bilinear formulation is exactly the same as the bilinear
relaxation in [5] except that zij ∈ {0, 1} in our problem as compared with zij ∈
[0, 1] in the bilinear formulation in [5]. As a result, our relaxation (3) is tighter
than the bilinear relaxation. As we will see later, the formulation leads to not
only very fast algorithm scales to large inference problem, but also the closed-
form solution for updating beliefs.

3 The Message Passing Algorithm

Message passing, also known as belief propagation is a strategy to perform in-
ference on probabilistic graphical models, e.g. MRFs. The success of message
passing algorithms lies in splitting the original inference problem into small
sub-problems according to the structure of the problem (known as factorisa-
tion), where each sub-problem can be efficiently solved via propagating messages
among nodes.

Compared with traditional message passing algorithms performed on MRF
graphs with known structures, our message passing algorithm has two differ-
ences. Firstly, it does not require knowing the graph structure of MRF. Instead,
the algorithm automatically estimates the graph structure and labelling simulta-
neously in a unique framework. Secondly, we derive a partial-dual of the original
inference problem and perform the messaging passing in the partial-dual space.
In comparison with existing algorithms for MRF inference with unknown graphs,
our algorithm is significantly faster because it iteratively solves the sub-problems
of the partial-dual problem which have analytical solutions.
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3.1 The partial-dual problem

It turns out that the following problem is equivalent to the problem (3):

max
z

min
β

∑
i∈V

max
yi

∑
j∈V \{i}

max
yj

βji(yj , yi) + θi(yi)

s.t.
∑

(i,j)∈E
1(i = k or j = k)zij ≤ h,∀k ∈ V,

zij ∈ {0, 1} ∀(i, j) ∈ E,

βij(yi, yj) + βji(yj , yi) = θij(yi, yj)zij ∀(i, j) ∈ E, yi, yj . (5)

Remember z are the primal variables that represent the graph structure. Here
β = [βij(yi, yj)]i 6=j,yi,yj are the dual variables. Despite the existence of the primal
variables z, for a fixed z this problem is called the partial-dual problem of (3)
because it is actually a Lagrangian dual of the primal problem (3) when z are
known.

The derivation is briefed as follows. First we fix all structure variables z and
the problem (3) becomes a linear programming problem of µ, for which we next
derive a Lagrangian dual using the technique presented by Globerson et al. in
[8]. Then we remove redundant constraints and variables, leaving only the dual
variables β. At last z are reset as free variables and we get (5). In comparison
with the primal version (3), the dual problem contains far fewer constraints.
However, solving such a problem is still difficult. We next present our message
passing algorithm that solves (5) approximately but efficiently.

3.2 The algorithm

In order to solve (5), we adopt an iterative strategy. Concisely, during each
iteration we fix all the primal and dual variables in (5) except for the variables
related to one selected edge. The reduced problem is solved analytically. This
process is repeated until a max-number of iterations is reached.

Problem reduction. Let E∗ denote the current edge estimation, and let z∗

denote the corresponding solution of structure variables. During each iteration a
node pair (i, j) is selected. By fixing all variables unchanged except for variables
related to (i, j), i.e. zij , βij(yi, yj) and βji(yj , yi) ∀yi, yj , the problem (5) becomes

max
zij∈{0,1}

min
βij ,βji

q(βij ,βji)

s.t. βij(yi, yj) + βji(yj , yi) = θij(yi, yj)zij ∀yi, yj ,∑
(r,s)∈E∗

1(r = k or s = k)z∗rs − z∗ij + zij ≤ h ∀k ∈ {i, j},

βij(yi, yj), βji(yj , yi) ∈ [0, 1] ∀yi, yj . (6)
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Here βij = [βij(yi, yj)]∀yi,yj ,βji = [βji(yj , yi)]∀yj ,yi , and the objective function

q(βij ,βji) = max
yi

[λ−ji (yi) + max
yj

βji(yj , yi) + θi(yi)]+

max
yj

[λ−ij (yj) + max
yi

βij(yi, yj) + θj(yj)], (7)

where λ−ji , λ−ij are compact representations of the following:

λ−ji (yi) =
∑
k∈V \{i,j} z

∗
ki maxyk βki(yk, yi), (8)

λ−ij (yj) =
∑
k∈V \{i,j} z

∗
kj maxyk βkj(yk, yj). (9)

As in [8], we define

λki(yi) = max
yk

βki(yk, yi) (10)

as the message passing from node k to node i. According to (8) and (9), λ−ji (yi)
is an accumulation of messages passing from all neighbouring nodes (except for
j) to i when it takes the label yi, and λ−ij (yj) is an accumulation of messages
passing from all neighbouring nodes (except for i) to j when it takes the label
yj . As we will see later, these messages carry essential information needed for
updating the current solutions.

Update via message passing. Because zij is a binary variable, we choose to
exhaustively search over zij ∈ {0, 1}. We have the following proposition:

Proposition 1. For any particular zij, the problem (6) actually has analytical
solutions: minimising q(βij ,βji) yields the following results

βij(yi, yj) = 1
2 [λ−ji (yi) + θij(yi, yj)zij + θi(yi)− λ−ij (yj)− θj(yj)], (11)

βji(yj , yi) = 1
2 [λ−ij (yj) + θij(yi, yj)zij + θj(yj)− λ−ji (yi)− θi(yi)]. (12)

Proof. Let ẑij denote a fixed value of zij . According to Equation (7), the follow-
ing inequality holds:

q(βij ,βji) ≥max
yi,yj
{λ−ji (yi) + λ−ij (yj) + βji(yj , yi) + βij(yi, yj) + θi(yi) + θj(yj)} =

max
yi,yj
{λ−ji (yi) + λ−ij (yj) + θij(yi, yj)ẑij + θi(yi) + θj(yj)}︸ ︷︷ ︸

LB

. (13)
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1 1 0.5
1 2 -0.2
2 1 -0.3
2 2 0.8

1 1 0.35
1 2 -0.7
2 1 -0.65
2 2 0.5

1 1 0.15
1 2 -0.95
2 1 0.5
2 2 0.3

zij=?

k

j
i

1 -0.8
2 0.6

1 -0.8
2 0.6

1 0.2
2 0.2

input (h=2) output
update

0
1

1.4
2.2

zij=1

k

j
i

k

j
i

k

j
i

update

resulting when

Fig. 1: Updating zij via message passing for a toy example with three nodes {i,j,k}. Here
h = 2. The required information includes potentials θi(yi), θj(yj), θij(yi, yj)∀yi, yj , and
the messages propagated from all other nodes to i, j, i.e. λki(yi)∀yi. The middle di-
agram visualise the computation of βij(yi, yj) and βji(yj , yi). Arrows denote message
or potential flows when zij = 1. The function values of q(βij ,βji) are given by the
table at the bottom of the right diagram. The value of zij is the one in {0,1} that gives
larger q(βij ,βji) and does not violate any sparsity constraints in (1).

Hence LB is a lower bound of q(βij ,βji). Plug the βij ,βji given (11) and (12)
into Equation (7), we have:

q(βij ,βji) = max
yi,yj

[λ−ji (yi) +
1

2
max
yj

(λ−ij (yj) + θij(yi, yj)ẑij + θj(yj)− λ−ji (yi)−

θi(yi)) + θi(yi)] + max
yi,yj

[λ−ij (yj) +
1

2
max
yi

(λ−ji (yi) + θij(yi, yj)ẑij+

θi(yi)− λ−ij (yj)− θj(yj)) + θj(yj)]. (14)

=⇒ q(βij ,βji) =

max
yi,yj

[λ−ji (yi) +
1

2
(λ−ij (yj) + θij(yi, yj)ẑij + θj(yj)− λ−ji (yi)− θi(yi)) + θi(yi)]+

max
yi,yj

[λ−ij (yj) +
1

2
(λ−ji (yi) + θij(yi, yj)ẑij + θi(yi)− λ−ij (yj)− θj(yj)) + θj(yj)].

(15)

=⇒ q(βij ,βji) = max
yi,yj
{λ−ji (yi) + λ−ij (yj) + θij(yi, yj)ẑij + θi(yi) + θj(yj)},

(16)

which means that LB can be reached with βij ,βji given by (11) and (12). Since
we are minimising the objective in (6) over βij ,βji, the proof is complete.

�

Note when zij = 0, setting βij(yi, yj) = 0, βji(yj , yi) = 0 also solves the
optimisation problem (6). In such case, we just use this trivial solution due to
two reasons. First, the computation of (11) and (12) can be avoided. Second,
this trivial solution gives zeros messages between (i, j), which is coherent with
the fact that there is no edge between node i and node j.
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Let {β0
ij , β

0
ji}, {β1

ij , β
1
ji} denote the solution of (6) when zij equals 0 and 1

respectively. To get the final solution, we need to know the optimal value of
zij . Since we are maximising over zij , the optimal zij is 1 if two conditions
are met: 1) q(β0

ij , β
0
ji) < q(β1

ij , β
1
ji); 2) all sparsity constraints in (6) are not

violated when setting zij = 1. Otherwise we let zij = 0. Updating zij via this
method is illustrated in Figure 1. If the optimal value of zij is 1, we compute
βij(yi, yj), βji(yj , yi) according to (12); otherwise we set βij(yi, yj), βji(yj , yi) to
0. Then we can update messages λij(yj) and λji(yi) according to (10). Note in
practice, it is not necessary to store β values explicitly as all information we
need for further computation is included in messages. During each iteration,
we randomly select an edge (i, j) and solve the associated problem (6) exactly.
Then we evaluate the objective in (1) using the current solution as inputs. If the
current solution improves this objective, it is kept otherwise we discard it and
consider the next (i, j). As shown in Figure 1, computing zij and {βij ,βji} can
be viewed as a process of passing messages to nodes i and j from other nodes.
Hence we call this algorithm partial-dual based message passing (PDMP). More
details about our algorithm can be found in Algorithm 1. Note the decoding, i.e.
determining the labelling y is achieved via maximising the so-called node beliefs
over the labelling space of each node.

Currently the PDMP algorithm supports pairwise potentials only. However,
with a modification of the sparsity constraints (e.g. restricting the total number
of super-edges), a similar message passing algorithm for graphs with arbitrary
cliques can be obtained.

4 Running Time Comparison

We compare the running time of our PDMP algorithm against the following
methods:

– Lan the method proposed in [4] which alternatingly implement two steps: 1)
fix graph structure and solve a MRF inference problem (with known graph);
2) fix labels and solve a LP problem. See [4] for more details.

– LP solves a linear programming relaxation [5] of the inference problem (2).
The LP problems are solved using the Mosek toolbox [9].

– LP+B&B the branch and bound method proposed in [5]. The bounds are
computed via solving the LP relaxation.

We generate synthetic data using a method similar to [10]. The node poten-
tials are uniformly sampled from U(−1, 1), while the edge potentials are created
as a product of a coupling strength and a distance dis(yi, yj) between labels yi, yj .
The coupling strength is sampled from U(−1, 1). Four types of distance functions
are used including linear: dis(yi, yj) = |yi−yj |, quadratic: dis(yi, yj) = (yi−yj)2,
Ising: dis(yi, yj) = yiyj , Potts: dis(yi, yj) = 1(yi = yj). We compare the average
running time of solving twenty different synthetic examples with the number of
nodes fixed to be 30. We let the sparsity parameter h = 2. The results are shown
in Table 1. Clearly our PDMP algorithm is the fastest, while the LP+B&B is
the slowest.
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Algorithm 1 PDMP Algorithm.

Require: potentials θ, h, max iteration number tmax.
Output: estimated y∗ and z∗.

1: Initialise: λij(yj)← 0, λji(yi)← 0, zij ← 0, t← 0, ot ← −∞.
2: while t < tmax do
3: for each (i, j) ∈ E (pick (i, j) randomly without repetition) do
4: compute β1

ij(yi, yj), β
1
ji(yj , yi) via (12).

5: β0
ij(yi, yj)← 0, β0

ji(yj , yi)← 0, zij ← 1.
6: if q(β0

ij ,β
0
ji) < q(β1

ij ,β
1
ji) and z is feasible then

7: βij(yi, yj)← β1
ij(yi, yj), βji(yj , yi)← β1

ji(yj , yi).
8: else
9: βij(yi, yj)← β0

ij(yi, yj), βji(yj , yi)← β0
ji(yj , yi), zij ← 0.

10: end if
11: update messages λij(yj), λji(yi) via (10).
12: end for
13: compute node beliefs: bi(yi)←

∑
k∈V \{i} zkiλki(yi) + θi(yi).

14: decode: y← [yi] with yi ← maxyi bi(yi).
15: ot+1 ←

∑
i∈V θi(yi) +

∑
(i,j)∈E θij(yi, yj)zij .

16: if ot < ot+1 then
17: y∗ ← y, z∗ = [zuv] ∀(u, v) ∈ E.
18: end if
19: t← t+ 1.
20: end while
21: return z∗ and y∗.

5 Applications

We apply the proposed method to semantic image segmentation and human
activity recognition. To our knowledge, this is the first work that estimates labels
and graph structures simultaneously in semantic image segmentation.

5.1 Semantic Image Segmentation

Given an over-segmented image, the task here is to assign each super-pixel in
the over-segmentation a label to express its object category.

A number of datasets are publicly available. In this paper we use the KITTI
dataset [11]. The original dataset contains both 2D images (1240×380) and 3D
laser data taken by a vehicle in different urban scenes. Since 2D information is
more general in practice, we discard 3D information in our experiments.

There are 70 labelled images made by [12] as groundtruth. The original la-
belling contains 10 classes: road, building, vehicle, people, pavement, vegetation,
sky, signal, post/pole and fence. As in [13], the 10 classes are mapped to five more
general classes that are: ground (road and pavement), building, vegetation, and
objects (vehicle, people, signal, pole and fence). Following [13, 12], the labelled
images are divided into two parts containing 45 and 25 images respectively. The
first part is used for training while the second part is used for testing.
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Ising Linear Quadratic Potts

LP 17 12 11 11
Lan [4] 2 1 1 1

LP+B&B [5] 570 402 403 403
PDMP (ours) 0.01 0.007 0.007 0.007

Table 1: Comparison of running time (by seconds) on synthetic data generated by using
different distance functions. For each distance function the best is highlighted.

φ2(yi, yj) φ3(yi, yj) G inference
CRF–Adj exp(−‖ ci− cj ‖2) if yi = yj , exp(−‖qi−qj ‖2) if yi = yj , Adj BP

1− exp(−‖ ci− cj ‖2) if yi 6= yj 1− exp(−‖qi−qj ‖2) if yi 6= yj
CRF–MST same as CRF–Adj same as CRF–Adj 2D MST BP
Lan − log(‖ ci− cj ‖2) if yi = yj , − log(‖qi−qj ‖2) if yi = yj , Lan [4] Lan [4]

0 if yi 6= yj 0 if yi 6= yj
PDMP same as Lan same as Lan PDMP PDMP

Table 2: Methods for image segmentation. The column G gives the approach used
to create graph structures, and the column inference lists the methods used to solve
the inference problem. Here BP means belief propagation, Adj stands for Adjacent.
Note the first two methods can also use the − log potential functions used by Lan and
PDMP. However, the performance is not as good as using the exp potentials.

A MRF based image segmentation strategy is adopted here. Each image x is
over-segmented into small regions (super-pixels) at first using SLIC toolbox [14].
The super-pixels and their relations are represented by a graph G = (V,E) with
the edge set E unknown. Each node i ∈ V in the MRF graph denotes a label yi
of the related super-pixel i. Each edge (i, j) ∈ E in the MRF graph encodes the
dependency between the associated labels yi, yj . Let φ1(yi), φ2(yi, yj), φ3(yi, yj)
denote the node feature, the edge feature in relevant to colour, and the edge
feature in relevant to super-pixel location respectively. The potential function
(parameterised by w = [w1, w2, w3]) is

F (x,w;y, G) =
∑
i∈V

w1φ1(yi) +
∑

(i,j)∈E

w2φ2(yi, yj) + w3φ3(yi, yj). (17)

Maximising F over y and G uncovers the label estimation of all super-pixels.
We test four methods: 1) CRF–Adjacency (Adj); 2) CRF–Minimum spanning
tree (MST); 3) Lan; 4) PDMP. These methods are summarised by Table 2.

Features. To compute the node feature φ1, we use the method employed in [13]:
for each super-pixel, image features are extracted; then a classifier is trained on
the extracted features; with the trained classifier, a score vector is computed
for each super-pixel with each score representing the confidence of labelling the
super-pixel by a particular label candidate. Let ci, qi denote the LAB colour,
the 2D position of the super-pixel i respectively. The definitions of φ2 and φ3 for
different methods are given in Table 2. For Lan and PDMP methods, in order
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ground objects building vegetation sky overall mean time

CRF–Adj 96.3% 63.9% 87.7% 90.5% 91.3% 84.4% 85.9% 0.516
CRF–MST 96.3% 67.8% 84.6% 96.5% 97.7% 86.2% 88.6% 0.023

Lan [4] 97.9% 71.3% 83.7% 87.6% 97.4% 85.1% 87.6% 7.323

PDMP (ours) 97.6% 73.1% 87.3% 95.1% 98.3% 88.3% 90.3% 3.357

Table 3: Segmentation accuracy and time (by seconds) on KITTI dataset. For each
column the best is highlighted. Column overall reports the overall segmentation ac-
curacy, and column mean shows the accuracy as an average of accuracies of different
classes. Among the methods that estimate graphs and labels simultaneously, our PDMP
method is much faster than Lan.

to estimate graph structures, the − log distance is used rather than Potts. This
distance allows to filter highly impossible edges out, e.g. the ones with super-
pixels far away from each other and distinct in colour. Though − log feature can
be used by other methods, the results are worse than using the exp potentials.

Graph construction. CRF-MST and CRF-Adj use pre-constructed graphs.
CRF-MST uses MST computed based on weights that equal the sum of two
values: 1) `2 norm of the difference between the 2D locations of two super-pixels;
2) `2 norm of the difference between the LAB colour vectors of two super-pixels.
CRF-Adj uses graphs consistent with super-pixel adjacency–if two super-pixels
are adjacent, their nodes are connected by an edge. For the other two methods,
the graphs are estimated together with labels using different inference methods.

Inference. Since the first two methods use fixed graphs, i.e. G is known, belief
propagation (BP) can be used to estimate labels. For the last two methods, it
is easy to formulate (17) into (1). Hence graphs and labels can be estimated
simultaneously using Lan and PDMP approaches respectively. Note using LP or
LP+B&B to do inference in this experiment are computationally prohibitive.

Regarding to the model parameter w, the first two approaches use the max-
imum pseudo likelihood (MPL) method [15] to learn w, while Lan and PDMP
use empirically selected w = [1, 0.1, 0.2]. The quantitative results are shown in
Table 3. Overall our PDMP method performs much better than all rest methods
on accuracy, and is much faster than Lan which estimates graphs as well. No-
tably, the methods using fixed MRF graphs are much faster than Lan and PDMP
since their inference problem is much easier than the problem (1). Visualisation
of some segmentation results by different methods is provided in Figure 2. It
can be seen that the estimated graphs (e) are more coherent with the layout
of objects than tree-structured graphs (c) and adjacency graphs (b). A closer
look at the figure suggests that our PDMP algorithm finds less undesirable edges
than Lan, e.g. the connection between the vegetation and the white box in the
right-most column.
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(a) original image

(b) graph according to super-pixel adjacency

(c) graph obtained via minimum spanning tree

(d) graph estimated via Lan

(e) graph estimated via our PDMP algorithm

(f) segmentation result by CRF-Adj

(g) segmentation result by CRF-MST

(h) segmentation result by Lan

(i) segmentation result by our PDMP method

Fig. 2: Visualisation of estimated graphs ((b)–(e)) and labels ((f)–(i)) in the image seg-
mentation task. Note a red edge indicates that the label predictions for the associated
nodes are different, while edges in other colours indicate identical label predictions
(one colour corresponds to one class). Colour code for segmentation results: ground,
building, vegetation, objects, sky. Our PDMP results are the best in general.
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cross wait queue walk talk overall mean time

MCSVM 44.1% 47.2% 94.6% 64.9% 94.0% 68.9% 69.0% 0.001

SSVM 45.0% 47.2% 95.3% 65.2% 96.1% 71.6% 69.8% 0.002

Lan [4] 55.9% 59.7% 94.6% 62.2% 99.5% 75.6% 74.4% 0.062
LP [5] 60.7% 60.4% 93.6% 47.3% 99.5% 75.0% 72.3% 0.044

LP+B&B [5] 55.9% 61.8% 95.7% 55.4% 99.5% 75.4% 73.7% 0.425

PDMP (ours) 59.3% 59.7% 94.6% 60.8% 99.5% 76.2% 74.8% 0.002

Table 4: Results on CAD dataset by different methods. Here time means the average
running time by seconds. For each column the best is hilighted.

5.2 Human Activity Recognition

We now consider the task of recognising human group activities. For clarity, the
term activity is used to describe the behaviour of a group of people, while the
term action refers to the behaviour of an individual. Let A denote the activity set.
Given an image and n body detections, let x0 denote the descriptor for the whole
image, x1,x2, . . . ,xn denote descriptors for each of n persons, y = [y1, y2, . . . , yn]
(yi ∈ A) represent the corresponding action variables, and a ∈ A represent the
activity variable for the image. Let G = (V,E) denote a graph spanning all action
variables. The potential function fw(x; a,y, G) (proposed in [4]) is given by

fw(x; a,y, G) =w>0 φ0(x0, a) +
∑

i
(w>1 φ1(xi, yi) + w>2 φ2(a, yi))+∑

(j,k)∈E
w>3 φ3(xj ,xk, yj , yk, a). (18)

Here φ0,φ1,φ2,φ3 are image-activity feature, image-action feature, action-activity
feature and action-action feature defined in [4] 3, w0,w1,w2,w3 are model pa-
rameters to be learned during training via latent structured SVM (structured
SVM is not applicable since the training problem is non-convex), see [4] for
details.

To find the best a, we need to maximise (18) over a,G,y. One can formulate
this problem into a form (1) (c.f. [4]), which can be solved using our PDMP
algorithm or the inference methods described at the beginning of Section 4.

Two additional methods are employed as baselines. The first one is the multi-
class SVM (MCSVM): we train a multi-class SVM classifier with linear kernel
using HoG descriptor extracted from the minimum bounding box area of all
human body detections. The second one is structured SVM (SSVM), for which
we train a structured SVM [16] to discriminate activities. The potential function
used for this method is a special case of (18) by fixing G as MST computed based
on 2D distance between body detections. To related inference problem is solved
via BP.

3 To compute these features, we need low-level image descriptors. All evaluating meth-
ods using the potential function (18) use the same descriptors extracted by us.
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Fig. 3: Visualisation of prediction results on the CAD dataset by PDMP. Activity
and action predictions are shown as the texts in cyan and yellow boxes respectively.
The human body pose is shown in green boxes. The estimated graph structures are
visualised by cyan lines. Abbreviations: cross–CR, walk–WK, wait–WT, Queue–QU,
talk–TK, front–F, left-L, right-R, back–B, front-left–FL, front-right–FR, back-left–BL.

We show the results in Table 4. Our PDMP method outperforms all other
methods. Please notice using fixed graphs (SSVM) performs much worse than
estimating graphs from data (Lan, LP, LP+B&B, PDMP), which verifies the
importance of inferring MRF graphs. Comparing with Lan, LP and LP+B&B,
our PDMP method performs better because 1) PDMP solves (3) which is tighter
than the relaxations used by its competitors; 2) during each iteration PDMP
solves a sub-problem of the partial-dual problem (5) exactly. Visualisation of a
few recognition results by the PDMP approach is given in Figure 3.

6 Conclusion

We proposed an algorithm to solve MRF inference with unknown graphs. The
algorithm is based on the mixed integer bilinear programming formulation, from
which we derived its partial-dual and approximately solved the partial dual via
message passing. The algorithm scales good to large inference problems without
sacrificing performance. We compared our method with existing methods on
both synthetic data and real problems. Improvements have been made using our
inference technique.
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