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Abstract—Camera calibration is an essential part of 3D
reconstruction. Conventional calibration methods require high
precision equipment and sophisticated operations. Compared
with that, Camera self-calibration is quite simple but with
low precision, which leads to significant performance degra-
dation of 3D reconstruction. Therefore, a high precision self-
calibration method with simple operations is necessary. In this
paper, by using the bundle adjustment algorithm and SIFT
points matching relationship, a local-global hybrid iterative
optimization method is proposed. Considering large number of
matching features, a neighborhood image matching method is
proposed that can significantly reduce the matching time under
the premise of maintaining accuracy. Experimental results
show that the proposed method is an effective method for high
accuracy, and it can reduce the time consumption of image
matching. Based on the relationship between corresponded
matching points in multiply view images, our method makes
full use of the local-global hybrid idea to compute the param-
eters of camera. Compared with existed other methods, it is
more robust with higher precision.

Keywords-camera self-calibration; multiple view images; im-
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I. INTRODUCTION

Camera calibration is an important technology in the

field of computer vision and considered as an essential step

to extract the three-dimensional spatial information from

two-dimensional images, which has been widely used in

the field of 3D structural reconstruction, navigation, visual

surveillance [1]. Conventional calibration methods require

high precision equipment and sophisticated operations. The

plane calibration method proposed by Zhang [2] requires

a checkerboard as auxiliary equipment. As a result, this

calibration method cannot achieve our aim of automation

and simplification. It has become one of the important

components in research to take 3D reconstruction by using

uncalibrated image sequences [3]. Whereas, for multiple

images, a common approach used to estimate the projection

matrices of each two images and then the obtained projection

matrices are optimized respectively. Finally, the matrices

are processed with a global optimization to get camera

parameters. The most used algorithm is LM (Levenberg-

Marquardt Algorithm) proposed by Moré [4], which uses

non-linear least square algorithm retaining the advantages

of gradient method and Newton method. Hu [5] etc. and

Nguyen [6] etc. have recommended their algorithms to

realize 3D reconstruction by using unconstrained and un-

calibrated images took from a handheld camera. In both

studies they used SIFT algorithm proposed by Lowe [7]

for feature point detection and matching, then estimated the

projection matrix to realize camera calibration. Accordingly,

the space 3D points, corresponding to the detected feature

points, could be used to describe the geometric positions of

the detected feature points. Considering each two images,

this type of calibration algorithms implement the local

and global optimization in turn. The camera parameters

which obtained with this type of algorithms are not highly

accurate enough and the 3D reconstruction results are just

satisfactory. Moreover, to match each of two images is very

time-consuming for large number of matching features.

Considering the defects of conventional camera cali-

bration and self-calibration methods, this paper highlights

a camera self-calibration method based on multiple view

images. It adopts the local-global hybrid optimization algo-

rithm first to realize self-calibration of camera positions and

orientations that is we can compute the intrinsic and extrinsic

camera parameters by image sequences and then implement

global optimization by using bundle adjustment. Moreover,

a neighborhood image matching method is proposed in this

paper to reduce the time consumption of image matching.

II. SELF-CALIBRATION ALGORITHM

A. Epipolar geometry

Essentially, the epipolar geometry between two images is

the intersection geometry of plane with axis of baseline. The

relationship between fundamental matrix and essential ma-

trix E = KTFK, where K is an internal parameter matrix.

It is convenient to obtain the essential matrix E. In addition,

the fundamental matrix F can be used to remove incorrect

matches during SIFT feature points matching. Hartley [8]

proposed that the camera rotation and translation parameters

corresponding to the second image could be obtained with

SVD singular value decomposition for the essential matrix

E. We modified RANSAC (Random Sample Consensus)

algorithm optimizing the following 8 point method to obtain

the fundamental matrix F . The steps of our algorithm are

given as Algorithm 1.
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Algorithm 1 Estimate the fundamental matrix

Input: n pairs of SIFT feature matching points

1. Set sampling stop condition according to confidence

probability. In our study, confidence probability = 0.95.

2. Randomly select 8 pairs of matching points from SIFT

matches of the two images to constitute a sampling.

3. On the basis of the random sampling in step 2, compute

the fundamental matrix Ftmp by using linear least

squares method for the 8 points.

4. Test each Ftmp with all the matching pairs of the

two images, and then obtain the quantity of inliers

corresponding to each Ftmp.

5. Repeat the steps 2 to 4 until it meets the confidence

probability.

6. Select the corresponding fundamental matrix F ac-

cording to the quantity of inliers.

7. Find out all the inliers corresponding to optimal F , and

eventually obtaining the final fundamental matrix F by

using nonlinear least squares method for the inliers.

Output: Fundamental matrix F

B. Image matching

For the image matching we use a bidirectional SIFT

feature matching algorithm proposed by An [9] to match

feature points among images. For all the images, if we match

each two images, the computational complexity will increase

rapidly with the increase of image amount. When we take

multiple images revolving around an object, for one of them,

the camera rotation and translation of its adjacent images

should be closed to the camera rotation and translation of

itself. Besides, those images contain much more information,

higher similarity and more feature matching point pairs.

However, the images, found away from the main image,

have low similarity. As a result, it can save time that we

only match for its adjacent images to a certain image.

C. Algorithm Description

A point in space can be captured by multiple cameras in

different positions. Bundle adjustment is a process in which

we can extract 3D coordinates and relative positions of each

camera from multi-view information. The initial values are

the parameters of camera projection matrices and 3D points.

EXIF is the abbreviation of Exchangeable Image File,

which contains the metadata specially designed for digital

camera photos, taking parameters and thumbnails recording

digital photos and other attributes. We can obtain initial focal

length f0 of cameras corresponding to each image through

extracting EXIF information of digital camera photos. Our

algorithm are given as Algorithm 2.

III. EXPERIMENT AND RESULT

The method proposed in published articles [10], [11] is a

classical self-calibration algorithm with high precision and

Algorithm 2 Estimate the camera parameters

Input: n organized images token by a handle camera

1. Extract SIFT features from all input images.

2. For each image:

A. Select K candidate matching images as its K nearest

neighbors.

B. Solve for the fundamental matrix between pairs of

images using algorithm 1.

C. Implement bidirectional SIFT feature matching to

the image with its K nearest neighbors.

3. Track all the matching feature points. So, the matching

feature points will generate a trajectory.

4. Select the initial image pair. The standards of selection:

A. The two images are K nearest neighbors and have

maximum number of matching feature points.

B. The baseline is required to be wide enough.

5. Compute the camera parameters of the initial pair and

their 3D points. Then optimizing the parameters and

the 3D point sets by using Bundle Adjustment.

6. Cameras adding:

A. Every 3D point corresponds to a trajectory. Find out

an image as the next calibration camera that has the

maximum number of trajectory which correspond to

the 3D point sets.

B. Compute the parameters of this camera using the

least square method and then a nonlinear least

square method is implemented to the parameters.

C. Compute new 3D points correspond to the newly

joined camera and add them to the 3D point sets.

7. For all the calibrated cameras, implement a global

optimization by using Bundle Adjustment.

8. Repeat the steps 6 to 7 until all cameras have been

calibrated.

Output: The internal and external parameters of the camera

robustness and results found were quite well. Therefore, we

followed the same image sequences as studies of [10]–[14].

We further download the image sequences with resolution

ratio of 512 × 768 from http://www.robots.ox.ac.uk/∼vgg/

data/data-mview.html as test images, and implement calibra-

tion with a certain camera. Fig.1a shows the example of the

Valbonne church image sequence. Comparing our calibration

result with the results presented in studies of [10]–[14], we

conclude the estimation results shown in Table I, where

(u0, v0) is the coordinate of principal point, indicating the

coordinate of center point of the image. fx and fy are the

focus values in the direction of x and y respectively.

As proposed in study of [12], we also take the results in

studies of [10], [11] as the reference standards. As shown

in Table I, our result is closer to the standards than that in

literature [12]–[14]. Specifically, we compute the difference
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(a) Valbonne church (b) Toy penguin

Figure 1. One image of Valbonne church and toy penguin sequence.

Table I
ESTIMATION RESULTS OF THE PROPOSED METHOD AND OTHER

METHODS

fx fy u0 v0

literature [12] 670.457 679.232 248.648 392.561

literature [10] 682.840 682.843 255.999 383.999

literature [11] 679.285 681.345 258.802 383.188

literature [13] 667 693 241 398

literature [14] 619 699 234 372

Our method 673.285 673.285 256.787 392.182

relative error(1) 1.399 1.399 -0.308 -2.131

relative error(2) 0.883 1.183 0.779 -2.347

between present results and that in literature [10], [11], and

then divide it by the results in literature [10], [11]. It is clear

that the relative error of the focal length f is about 1%, the

relative error of u0 is about ±0.5%, and the relative error

of v0 is about ±2.2%. Therefore, the calibration results are

quite satisfactory, which proves the precision and validity of

the proposed algorithm. We also use the patch-based multi-

view stereo algorithm proposed by Furukawa [15] to 3D

visualize the Valbonne church image sequences with the

camera parameters given in the literature [10]–[14]. The

comparing results are shown as Fig.2.

In order to reduce the matching time as described in

section II-B and considering different number of multiple

view images would influence on the velocity and precision

of calibration, we take 70 pictures surrounding a toy penguin

taken with a SONY DSC-W310 digital camera and a sample

shown in Fig.1b. The image resolution is 2592×1944.

The experiment group the image sequence into three

categories, corresponding to 30 images, 50 images, and 70

images respectively, we realize camera calibration and then

test the calibration results with 3D point cloud visualization.

For each category, there are three kinds of K nearest-

neighbors image matching, corresponding to 4 nearest-

neighbors, 8 nearest-neighbors and full matching. Table II

shows the estimation results by using different number of

images with different neighbors. Fig.3 shows the 3D point

cloud visualization. It is clear that the matching images of

one image are almost in its neighborhood.

Table II
ESTIMATION RESULTS OF THE PROPOSED METHOD WITH DIFFERENT

NEIGHBORS

f u0 v0 matches(pairs) time(s)

30

4 2044.460 1306.900 973.983 4224 4.859

8 2044.640 1300.080 969.168 4311 9.914

all 2043.260 1304.450 972.866 4340 31.184

50

4 2045.490 1271.010 975.916 15235 8.863

8 2043.010 1301.710 969.753 17024 17.894

all 2045.670 1301.050 970.449 17244 103.785

70

4 2042.000 1310.230 970.209 29890 12.959

8 2043.630 1292.640 970.792 36310 25.527

all 2043.480 1301.320 970.666 37409 205.830

IV. CONCLUSION

We have proposed a camera self-calibration method based

on multiple view image sequence which is unconstrained

and uncalibrated. We use bundle adjustment algorithm to

estimate the internal and external parameters of the camera.

During the image adding step, for the newly joined camera,

we calculate the camera parameters by using the least square

method optimized by RANSAC algorithm and it can be

regarded as a local optimization. Then, a global optimization

is done to all the calibrated cameras by bundle adjustment

after the 3D space points corresponding to the newly joined

camera added to the 3D point sets. It is a local-global hybrid

iterative optimization process. Compared with the existed

other methods, it is more robust with higher precision.

Furthermore, for large number of matching features, we

use a neighborhood image matching method to reduce the

matching time under the premise of maintaining accuracy.

For the image sequence is organized, to one of the images,

i.e. camera rotation and translation of its adjacent images is

closed to the camera rotation and translation of itself and it

is confirmed by the experiment we conducted.
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